
AOMO: An AI-aided Optimizer for Microservices Orchestration

Xue LengӺ, Tzung-Han JuangѰ, Yan ChenѰ, Han LiuѰ

Ӻ Zhejiang University, Ѱ Northwestern University

Abstract

Cost-effective and high-performance microservices
orchestration is a challenge for Microservice Management
Service Providers (MMSPs). Current microservices scheduling
mechanisms cannot obtain the optimal solution for large-scale
microservices within a short period of time [1] and scaling
mechanisms are either threshold-based or semi-automatic. In
this case, the resources of the cluster are not fully utilized which
increases unnecessary costs of MMSPs.
To address the downsides mentioned above and reduce the
total costs of MMSPs, in this paper, we propose AOMO, an AI-
aided Optimizer for Microservices Orchestration, which can
achieve cost-effective and high-performance microservices
orchestration across microservices’ lifecycle. To improve the
resource utilization of cluster, we propose a ranking-based p-
batch scheduling mechanism, which adopts pairwise ranker to
obtain the scheduling plan rapidly for large-scale microservices.
To improve the scaling agility of microservices, we propose a
proactive prediction-based scaling mechanism, which performs
scaling operation in advance based on the prediction of
resource usage.

Inefficiency of the 
scheduling mechanism

Lack of scaling agility

propose a mechanism to deploy
large-scale microservices in a
short time while achieving high
resource utilization

design a microservices scaling
mechanism to adjust the number
of microservice instances to
adapt to workload fluctuations
without triggering the critical
state

Scheduler Design

Framework

Pre-scaler Design

Motivation-Challenges

We propose a ranking-based p-batch scheduling mechanism to
determine the deployment plan of microservice instances and
achieve rapid and cost-effective deployment.

◆ Ranking-based
Pairwise ranker is adopted and trained offline with millions of data generated by the ranker
simulator. With the scheduling principle of preferring active nodes than inactive nodes and
making the ratio of consumed CPU to Memory close to the ratio of allocatable CPU to
Memory of the node, the number of nodes running in the cluster is significantly reduced.

◆ p-batch
Scheduler considers p pods as a 
batch in each scheduling round to 
optimize the deployment solution.

◆ Results
The average computation 
time of the ranker is 
3.67ms.

We propose a proactive prediction-based scaling mechanism,
which can automatically scale microservices in advance based
on the resource usage prediction.

The Bidirectional Long Short-
Term Memory (BI-LSTM) model
is adopted to predict the
resource (e.g. CPU and Memory)
usage of microservices in the
next 15 minutes.

This scaling mechanism can effectively avoid resource usage
reaching the threshold and mitigate resource contention and
service disruption.

We adopt public Alibaba Cluster Data [3] to assess the accuracy
of resource usage prediction. The average RMSE is 2.85.

◆ Pre-scaler scales up/down pods in advance based on the
resource usage predictions.

◆ Data Collector
collects CPU and
Memory usage of
pods and nodes
[2].

◆ Scheduler selects
a node for pods
to run on.

References
[1] Adalberto R Sampaio, et al. 2019. Improving microservice-based 
applications with runtime placement adaptation. JISA 10, 1 (2019), 4.

[2] Kubernetes, production-grade container orchestration, 2019. http://bit.ly/k8sio 
[3] Alibaba Cluster Data v2017. https://github.com/alibaba/clusterdata


