AOMO: An Al-aided Optimizer for Microservices Orchestration

Cost-effective and high-performance microservices
orchestration is a challenge for Microservice Management
Service Providers (MMSPs). Current microservices scheduling
mechanisms cannot obtain the optimal solution for large-scale
microservices within a short period of time [1] and scaling
mechanisms are either threshold-based or semi-automatic. In
this case, the resources of the cluster are not fully utilized which
increases unnecessary costs of MMSPs.

To address the downsides mentioned above and reduce the
total costs of MMSPs, in this paper, we propose AOMO, an Al-
aided Optimizer for Microservices Orchestration, which can
achieve cost-effective and high-performance microservices
orchestration across microservices’ lifecycle. To improve the
resource utilization of cluster, we propose a ranking-based p-
batch scheduling mechanism, which adopts pairwise ranker to
obtain the scheduling plan rapidly for large-scale microservices.
To improve the scaling agility of microservices, we propose a
proactive prediction-based scaling mechanism, which performs
scaling operation in advance based on the prediction of
resource usage.

Motivation-Challenges

Framework
- <> Depl ' <---» Scale a running service Master Node
- eploy a new service | . —— ‘ Da ta COI Iec to r
ﬁ Al Analysis Module<--=-)[Horizontal Pod Scaler } : I I d
T = x : collects CPU an
eployment.yaml |—

@ E)ata Stora‘ :
| S S .1 Memory usage of

System Metrics >| Data Collector :

"""""""" > > [Pairwise Ranker :

pods and nodes

[2].

Worker Nodes

/Worker Node) /Worker Node n\

/W()rker Node}

. & Scheduler selects
@ |
.@ @ ------ “s7" a node for pods
. / o / to run on.

& Pre-scaler scales up/down pods in advance based on the
resource usage predictions.

propose a mechanism to deploy
large-scale microservices

in a
short time while achieving high
resource utilization

Inefficiency of the
scheduling mechanism

desigh a microservices scaling
mechanism to adjust the number

Lack of scaling agility of microservice

adapt to workload fluctuations
without triggering the critical
state

instances to

We propose a ranking-based p-batch scheduling mechanism to
determine the deployment plan of microservice instances and
achieve rapid and cost-effective deployment.

We propose a proactive prediction-based scaling mechanism,
which can automatically scale microservices in advance based

on the resource usage prediction.
The Bidirectional Long Short-

Term Memory (BI-LSTM) model
is adopted to predict the
resource (e.g. CPU and Memory)
usage of microservices in the
next 15 minutes.

This scaling mechanism can effectively avoid resource usage
reaching the threshold and mitigate resource contention and
service disruption.

RG SOuUrce
Utilizatior!

" No scaling

Threshold b == ----- .

K8s Scaler | S
AOMO Pre-scaler

>

t, tas t ts t Running time

We adopt public Alibaba Cluster Data [3] to assess the accuracy
of resource usage prediction. The average RMSE is 2.85.

22.5 1
-==- real

20.0 - —
_ — ftest 2 36 -
E 17.5 - "qm"}'
% 15.0 - m 34 -
@ 125- -
2 -
: 1D-D' o 31'
o =
) 7.5 @

5.0 = 30 -

e ---.-m-—-—: !
0 25 50 75 100 125 150 175 200 0 25 50 J5 100 125 150 175 200

Time Interval - 300 seconds each Time Interval - 300 seconds each

PERFORMANCE COMPARISON BETWEEN THE KS8s Scheduler AND THE AMIO Scheduler.

of Pods

Total Resources Requested by Pods # of Nodes CPU Utilization Memory Utilization
CPU (core) Memory (GB) AOMO | K8 | AOMO KS8s AOMO KS8s

50

4.75

3.77

10

59.38%

11.05%

31.42%

8.77%

9.50

7.54

10

67.86%

22.09%

37.70%

17.53%

100

9.97

8.02

10

49.83%

23.17%

40.10%

18.65%

19.93

16.04

o] th| 4= 12

10

64.29%

46.35%

45.83%

37.30% |

4 Ranking-based
Pairwise ranker is adopted and trained offline with millions of data generated by the ranker
simulator. With the scheduling principle of preferring active nodes than inactive nodes and
making the ratio of consumed CPU to Memory close to the ratio of allocatable CPU to

Unscheduled Pod Queue

>Pod px>-->Pod px - p+1> > Pod p>> Pod 1 > =

L J . J

p-batCle p-b;tchl o
Memory of the node, the number of nodes running in the cluster is significantly reduced.
(Scheduler] 1
P(N; > Ni|R ,O .,C — — Model-based - 15 nodes
o oy’ , (N; > Ni|Rpoa, Cn;, Cn,.) |+ o Fo(Broa:On, Ony) e i
aster Node) © |--- AOMO - 15 nodes
¢ p'batCh ¢ Results E | AOMO - 20 nodes
V . c 20
== D e o Scheduler considers p podsasa The average computation
w2 batch in each scheduling round to time of the ranker is =
b ~ J 0 EE— v R p—
Worker Nodes

Node Pool

Optimize the deployment solution. 3.6/mes. =3 20 40 60 80 100 120 140

The number of Pods

