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1 INTRODUCTION
Microservices as a new service-oriented architecture attracts more
attention from industry and academia, and there are 91% of com-
panies are using or have plans to use microservices [4]. Compared
to the traditional monolithic service architecture, microservice ar-
chitecture decouples applications based on the functionality of
modules. Benefiting from the loosely coupled architecture, applica-
tions can achieve multi-language development, independent deploy-
ment, fast iteration, and flexible management. The large companies
usually have a huge number of microservices to support business
operations, e.g., Twitter has O(103) microservices and O(105) mi-
croservice instances [5]. Hence, managing these large number of
microservices at the lowest labor costs and equipment costs is not
only a goal but also a challenge for Microservices Management
Service Providers (MMSPs).

Compared to traditional cloud services, microservices are more
dynamic and have a larger scale. Hence, a microservices orchestra-
tor should have the following properties:

• Scalability. Orchestrating a huge number of microservices
is a challenge. The scheduling plan should be given in con-
stant time to achieve rapid deployment.

• Agility. Microservices are lightweight and dynamic. Hence,
the orchestrator needs to scale microservices agilely based
on the workload and resources usage of microservices and
servers.

• High Resource Utilization. Fully utilizing the resources
(e.g. CPU and memory) and reducing the number of servers
can significantly reduce the costs of MMSPs. However, im-
proving the resource utilization without introducing degra-
dation in the quality of service is still a challenge.

There are many state-of-the-art works which focus on only one
or two properties mentioned above. As illustrated in Table 1, model-
based work ([3, 6]) build models to get an optimal solution, which
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Table 1: AOMO vs. Existing Work

Solutions Scalability Agility High Utilization
model-based work [3, 6] x x ✓
heuristic-based work [2] ✓ ✓ x
AOMO ✓ ✓ ✓

can achieve high resource utilization but cannot be applied to de-
ploying large-scale microservices due to high computational com-
plexity. And the heuristic-based work [2] is a trade-off solution,
which can work in large-scale scenarios but only obtain a subopti-
mal solution and have limited resource utilization. The best way to
manage the huge number of microservices is to adopt management
tools like Kubernetes, Spring Cloud, and Docker Swarm. Never-
theless, their scheduling mechanisms have some drawbacks. For
instances, the current scheduling and scaling mechanisms only
refer to the instantaneous resource usage of servers instead of the
historical resource usage of microservices and servers, which may
lead to the underutilization of resources when the workload is low,
and the risk of resource contention when most microservices are
under high workload. Besides, existing scaling mechanisms are not
agile enough and not fully automatic when scaling microservices,
which makes the scaling lag and needs human intervention.

To address the downsides mentioned above and minimize the
total costs of MMSPs, in this paper, we proposeAOMO, anAI-aided
Optimizer forMicroservices Orchestration. Under the premise of
guaranteeing the QoS of Service Consumers, AOMO is designed to
deploy microservices with the minimal number of nodes1, as well as
automatically scale pods2 based on the fluctuation of microservices’
workload. By collecting and analyzing the historical resource usage
of nodes and pods, AOMO can predict the resource usage of each
node for current and after a period of time. Based on the prediction,
AOMO leverages the pairwise ranking model to calculate a near
optimal microservices deployment plan in constant time, which
can work well for large-scale microservices deployment. Moreover,
AOMO leverages the prediction of workload and resource usage of
running microservices to complete pre-scaling before the system
reaches the critical state. This automatic scaling can improve the
resource utilization of the cluster while ensuring the quality of
service. Since AOMO improves the resource utilization, reduces
the number of nodes running in the cluster, and realizes automatic
pre-scaling, the equipment costs and labor costs of MMSPs can be
significantly reduced.

2 DESIGN
To minimize the costs of MMSPs, AOMO automatically deploys
and pre-scales microservices with the minimal number of nodes.
As shown in Fig. 1, the Data Collector collects the system metrics

1Node is the machine to run microservices, which may be a physical machine or virtual
machine.
2Pod is the smallest creation and deployment unit consisting of one or more containers
that are tightly coupled and share resources.
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Figure 1: System framework.

(e.g., the CPU and Memory usage of nodes and pods, the resource
capacity of each node, and the pod allocation of each node) peri-
odically and store them to the Data Store. When deploying a new
service, Scheduler assigns nodes considering the requirement of
each undeployed pod and the capacity of nodes in the cluster. After
services are deployed successfully, Pre-scaler monitors the work-
load and resource utilization of each microservice and scales the
microservice in advance once a prediction that the critical state is
about to be reached is detected.

2.1 Intelligent Scheduler.
Scheduler is responsible for selecting a node for newly created
pods to run on. Optimizing the deployment of microservices can
significantly reduce the migration costs. We adopt pairwise ranking
to allocate pods to the nodewith the highest priority. As represented
in Eq. (1), for each node pair (Nj ,Nk ), Scheduler takes the resource
requirement of pod (Rpod ) and the current resource capacity of
nodes (CNj ,CNk ) as input to calculate the ranking between two
nodes. After all comparisons are completed, the node Ni with the
highest priority will be selected to run the pod.

P(Nj ≥ Nk |Rpod ,CNj ,CNk ) =
1

1 + e−fω (Rpod ,CNj ,CNk )
(1)

The current scheduler follows the one-by-one manner to sched-
ule pods, whose allocation plan is affected by the arrival order
of pods and is not optimal. Different from the current scheduler,
AOMO Scheduler follows the p-batch manner, which each time
takes p unscheduled pods as input to calculate the allocation plan
with the ranking model. Since the pods can be deployed in parallel,
the scheduling time of microservices will be reduced significantly.

2.2 Pre-scaler.
Scaling microservices based on the demands and workload can im-
prove the resource utilization and reduce costs. However, existing
scaling mechanisms only consider instantaneous resource usage
and cannot realize fully automatic scaling, which either has the
hysteresis of scaling or needs human intervention. Take the Fig.
2 as an example, developers define the desired state of microser-
vice s , and s reaches the critical state at t1, then the microservice
management tool like Kubernetes detects this issue at ts and start
to scale up pods for microservice s , thus the resource utilization
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Figure 2: Pre-scaling Timeline.

of s falls back under the threshold at t2. Although this mechanism
can achieve auto-scaling for microservices, it inevitably makes the
system be in a critical state for a while.

To address the shortcoming of auto-scaler, we design a proactive
prediction-based Pre-scaler, which can automatically scale the mi-
croservices based on resource usage predictions in advance. AOMO
collects the CPU andmemory usage of pods and nodes continuously,
then Pre-scaler takes these data as input to train the Bidirectional
Long Short-Term Memory (BI-LSTM) model, and a prediction will
be generated that microservice s will reach the critical state at t1,
the scaling should be completed before that time. Finally, the Pre-
scaler scales the microservice s at tas in advance before reaching
the critical state. This mechanism can ensure the system always in
the ideal state and automatically scale microservices based on the
prediction of the workload and resource usage.

3 PRELIMINARY RESULTS
We implement a prototype of AOMO and train the prediction model
with the dataset Alibaba Cluster Data V2017 [1], which provides
the resource (i.e., CPU and memory) capacity of each server, the
requested resource of each container, and the resource usage of
containers and servers which are collected from about 1300 ma-
chines for 24 hours. We also evaluate the performance of the Data
Collector. Collecting system metrics for 1 hour, it only consumes
4.89 millicpu and 8.18 MB memory and occupies 336 KB storage
space.
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