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Abstract—Software-defined networking (SDN) has emerged
as a new network paradigm that promises control/data plane
separation and centralized network control. While these features
simplify network management and enable innovative networking,
they give rise to persistent concerns about reliability. The new
paradigm suffers from the disadvantage that various network
faults may consistently undermine the reliability of such a net-
work, and such faults are often new and difficult to resolve with
existing solutions. To ensure SDN reliability, fault management,
which is concerned with detecting, localizing, correcting and
preventing faults, has become a key component in SDN networks.
Although many SDN fault management solutions have been
proposed, we find that they often resolve SDN faults from an
incomplete perspective which may result in side effects. More
critically, as the SDN paradigm evolves, additional fault types are
being exposed. Therefore, comprehensive reviews and constant
improvements are required to remain on the leading edge of
SDN fault management. In this paper, we present the first
comprehensive and systematic survey of SDN faults and related
management solutions identified through advancements in both
the research community and industry. We apply a systematic
classification of SDN faults, compare and analyze existing SDN
fault management solutions in the literature, and conduct a gap
analysis between solutions developed in an academic research
context and practical deployments. The current challenges and
emerging trends are also noted as potential future research
directions. This paper aims to provide academic researchers and
industrial engineers with a comprehensive survey with the hope
of advancing SDN and inspiring new solutions.

Index Terms—Software-defined networking (SDN), SDN reli-
ability, SDN faults, fault classification, system monitoring, fault
diagnosis, fault recovery and repair, fault tolerance.
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SOFTWARE-DEFINED networking (SDN) is an emerg-
ing network paradigm that promises to simplify network

management and enable innovations in networking [1]–[3].
In SDN, the traditional network architecture is split into a
programmable data plane and a logically centralized control
plane, rather than the two being integrated in the same
configurable black box [4]–[6]. The split architecture places
most of the network control logic (specified by software
programming) into the control plane and simplifies the data
plane, which merely acts on forwarding decisions installed
by the control plane [4], [5]. SDN reduces the complexity of
network management and provides powerful programmability
for networking. A network implemented with SDN can quickly
evolve to satisfy network users’ rapidly changing demands
for network resources, e.g., in cloud computing [7], network
function virtualization (NFV) [8] and Internet of Things (IoT)
[9] scenarios. The network innovations it provides position
SDN as the future of networking.

SDN mainly originated from the OpenFlow project created
by McKeown et al. [6]. Util now, SDN has undergone constant
development and has been the subject of significant attention
and active exploration in academia and industry. In addition
to being the focus of a large number of research publications
[1]–[3], SDN has also achieved many successful deployment
stories presented by IT corporations, such as the Google
B4 project [10], Microsoft Ananta [11], and NTT Cloud
gateway [12]. Currently, the development of SDN is being
strongly promoted by various organizations (e.g., industries,
enterprises, data center vendors, governments and academic
institutions) [13], and SDN-based solutions are also advancing
the development of many other emerging network technologies
(e.g., NFV, IoT, cloud, and 5G technologies) [1], [7]–[9]. SDN
is therefore highly promising for modern network manage-
ment. However, regarding the adoption of SDN techniques,
one area that continues to cause concern for network operators
and users is the reliability of SDN [1], [6], [13].

Reliability refers to the probability of failure-free operation
over a specified period of time under stated conditions [14].
Reliability is a critical ingredient of all designs created in all
industries, and SDN is no exception. Certainly, the centralized
nature of networking in SDN offers clear advantages in terms
of reliability. For instance, because of the global network
visibility, the control plane can easily compose different
network policies and materialize them on the data plane
without conflicts. However, several new features in the SDN
architecture also raise doubts about its reliability. Such features
include the control/data plane separation architecture, which
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can increase network processing latency and lead to cross-
layer network faults [15]; the software-based management
approach, which can introduce various software bugs/defects
into networks [16], [17]; and the limited network processing
capability of SDN controllers, which can affect the reliability
of network control for networks of diverse sizes [17]. These
features all have the potential to cause faults in SDN that
exhibit various symptoms and have complex root causes,
thus making them more complex and difficult to avoid and
diagnose. For example, state inconsistency between the control
and data planes is a common type of fault in SDN and can
induce various types of network failures, e.g., forwarding loops
and blackholes; moreover, a fault of this type has several
possible root causes, including vendor-specific optimization of
switches [15], [18], software bugs in the control plane [16],
[17], or conflicts among different policies [19], [20]. Thus, the
ability to resolve faults to achieve high reliability remains a
key concern when implementing SDN.

To control the effects of these faults, several techniques
are used [21], [22], such as system state monitoring, fault
detection, localization and resolution, and fault tolerance
mechanisms. These techniques are collectively referred to as
fault management techniques [21]. In the domain of SDN,
multiple recent investigations have been conducted on fault
management solutions, including software fault troubleshoot-
ing [16], [17], [23], policy conflict arbitration [24]–[26],
forwarding path verification [19], [20], [27], network behavior
inspection [15], [28], network measurement [29], [30], as well
as fault recovery and tolerance design [31], [32]. These studies
have greatly contributed to improving the reliability of SDN.
However, we find that most such studies resolve SDN faults
from only a partial perspective, not a global one; this may
result in incomplete and flawed solutions and may even induce
other side effects. More seriously, as the network paradigm
evolves, more potential faults are being exposed. Thus, it is
necessary to conduct a comprehensive and systematic survey
of SDN faults and related management solutions, accompanied
by an in-depth discussion and analysis, to provide researchers
and engineers with a foundation for motivating continual
improvements in SDN fault management.

However, to the best of our knowledge, such comprehensive
survey of SDN fault management has yet been performed [1]–
[3], [33]–[38]. Some previous surveys have been conducted
from the overall perspective of SDN development [1]–[3],
some have focused on issues in the SDN security domain
[33]–[35], [39], and some have focused on SDN network
measurement [36] and SDN fault tolerance [37]. SDN faults
and management solutions have been discussed only to a lesser
extent, without detailed discussions or analysis. This situation
motivates us to systematically summarize and evaluate exist-
ing solutions for SDN fault management to achieve such a
fundamental and comprehensive survey.

The main objective of this paper is to survey the aca-
demic publications and industrial projects related to SDN fault
management over the period of 2008–2017 and to present a
systematic discussion and analysis of SDN faults and man-
agement solutions. The main contributions of this paper are
as follows:

• State of SDN: We characterize the current overall state of
SDN development to help new researchers and network
operators understand SDN and the related reliability
issues (Section II-C).

• Taxonomic Framework: We design a two-dimensional
taxonomic framework to provide an overview of SDN
faults and related management solutions (Section II-E).

• Fault Classification: Through a bottom-up analysis of
the SDN architecture (Section II-B), we develop a sys-
tematic classification of faults in SDN networks and
analyze their symptoms and root causes (Section III).

• Evaluation and Analysis of Existing SDN Fault Man-
agement Solutions: We present an in-depth analysis of
SDN fault management with respect to system moni-
toring (Section IV), fault diagnosis (Section V), fault
recovery and repair (Section VI) and fault tolerance
(Section VII) by classifying, comparing and analyzing
existing solutions.

• Gap Analysis between Academia and Industry: Con-
sidering the gap between academic research and industrial
engineering, we also highlight fault management projects
implemented in mainstream SDN-related ecosystems and
identify the major barriers to developing powerful fault
management tools for practical SDN network manage-
ment (Section VIII).

• Future Research Opportunities: Finally, we present
a discussion of potential research directions related to
SDN fault management, including current challenges and
emerging trends (Section X).

II. BACKGROUND

In this section, we present the background on SDN, focusing
on its differences from traditional networks, relevant terminol-
ogy, and the current state of development. The fundamentals
of SDN fault management and a two-dimensional taxonomic
framework for classifying SDN faults and related management
solutions are also presented.

A. Traditional and SDN Networks

As shown in Fig. 1 (a), a traditional network consists
of various configurable network devices and is commonly
operated in a distributed manner. Each of these devices is
an autonomous system that can build its own forwarding
information bases (FIBs) and network topology by exchanging
network information with its neighbors and can then decide
how to forward packets based on its FIBs. In these network
devices, the control logic is tightly coupled with forwarding
functions, and this tight coupling, however, leads to a variety of
problems with regard to, e.g., the compatibility and extension
of network protocols, switch software updates, network device
maintenance, and network innovations.

In SDN (see Fig. 1 (b)), the network architecture is modified
by clearly separating the network into three network planes
(i.e., the application plane, control plane, and data plane)
connected by two internal interfaces (i.e., the northbound
interface and southbound interface). The application plane al-
lows network operators to specify their desired network control
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Fig. 1. Architectures of a traditional network and an SDN network.

logic through the northbound interface. The control plane is
the core of an SDN network. It abstracts the network state
and resource information to simplify the network reasoning
for decision making in the application plane; meanwhile, it
also translates the control logic into low-level flow instructions
and installs them into the data plane through the southbound
interface (as defined by SDN protocols, e.g., OpenFlow [40]
and ForCES [41]) to control traffic forwarding. The data plane
then simply forwards packets according to the installed flow
instructions. These features of SDN offer a promising means of
addressing the problems in the traditional network architecture
and have driven SDN to gain significant traction in both
academia and industry.

B. SDN Terminology

To further introduce SDN, we now discuss the major
elements of the SDN architecture. Currently, several standard
organizations (e.g., the Open Networking Foundation (ONF)1,
the Internet Engineering Task Force (IETF) [41] and the
Internet Research Task Force (IRTF) [5]) and industrial and
community consortia (e.g., OpenDaylight2 and ONOS3) all
conduct standardization activities for SDN. In this subsection,
we present the essential SDN terminology used throughout this
paper, as collected from documents regarding these standard-
ization activities and academic literature surveys [1]–[3], [33],
[34]. We provide a list of abbreviations in Table I. The detailed
descriptions of the relevant terminology are as follows:

• Network Device: A network device can be either physical
or virtual and performs a set of network operations
relevant to packet forwarding. It can be implemented in
common hardware (e.g., NetFPGA and Pica8 3920) with
a compliant operating system or in software (e.g., Open
vSwitch) on common servers.

• Data Agent: A network device contains one or more
data agents, as defined by SDN southbound proto-
cols (e.g., OpenFlow, ForCES or Programming Protocol-

1ONF - https://www.opennetworking.org/.
2OpenDaylight - https://www.opendaylight.org/.
3ONOS - https://onosproject.org/.

Independent Packet Processors (P4) [42]), for forwarding
packets and interacting with SDN controllers; examples
of such data agents include OpenFlow agents and ForCES
Forwarding Elements.

• Data Plane (DP): The DP is the bottom layer of an SDN
network and is the collection of network devices.

• Southbound Interface (SBI): Located between the con-
trol plane and the DP, the SBI is responsible for all
interactions between these two planes, e.g., configura-
tion issuing, event notification, and device performance
querying. These interactions are often defined by SDN
southbound protocols.

• Controller: A controller is a software entity for network
control. In addition to providing core management func-
tions, e.g., topology discovery, device management, and
state synchronization, it also enables the installation of
external programs (i.e., applications) through northbound
APIs or controller APIs (i.e., controller function inter-
faces) [43], allowing them to deploy their control logic
into the underlying networks.

• Control Plane (CP): As the middle layer, the CP is
the collection of all controllers and acts as a network
operating system. The CP is logically centralized, but
it can be implemented either in a physically distributed
manner or in a cluster to manage all network devices in
the DP.

• Eastbound/Westbound Interface (EBI/WBI): Since the
CP is often physically distributed, it is necessary to
implement EBIs and WBIs (e.g., SDNi [44]) to enable
interactions among the distributed controllers (e.g., state
synchronization, control coordination and topology ex-
change).

• Northbound Interface (NBI): The NBI is the com-
munication interface between the application plane and
the CP. It is responsible for providing upper-level SDN
applications with an abstract view of the underlying
network and interfaces for accessing network resources.
Unlike in the case of the SBI, currently, the controllers
often use a common interface (e.g., REST API, Onix API
or Java API) to implement the NBI.
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TABLE I
ABBREVIATION

Acronym Description
DP Data plane
SBI Southbound interface
CP Control plane
NBI Northbound interface
EBI/WBI Eastbound/westbound interface
AP Application plane
App SDN application

• Application Plane (AP): The AP is the top layer and
includes various applications and external affairs (e.g.,
high-level orchestration systems). Network users can in-
teract with this plane to control and manage the entire
network through a variety of applications.

• Application (App): In the context of SDN, apps are
the software programs that define the network control
logic. Apps can be implemented in the AP (accessing the
network through the NBI) or CP (accessing the network
through controller APIs). Apps that are implemented in
controllers are more commonly called control programs
or application modules [23], [45], [46] ; examples include
the application agents in SDN controllers defined by
ONF [4] and the plugins in OpenDaylight. Some of them
can provide northbound APIs for external apps. In this
paper, we do not draw explicit distinctions among the
terms “application”, “control program” and “application
module”; instead, we consider them interchangeably to
help us focus on the faults induced by design flaws and
coding mistakes.

C. State of SDN Development

In this subsection, we characterize the state of SDN devel-
opment, including open networking ecosystems, network pro-
grammability, southbound protocols, and network complexity,
to help readers understand the reliability issues facing SDN.

1) Open Networking Ecosystems: In the traditional net-
working world, each network company (e.g., Cisco, Brocade
and Huawei) typically dominated its own network ecosystem,
with these ecosystems being either closed or semi-closed and
interoperable with others only through IEEE or IETF stan-
dards. These closed ecosystems hinder the rapid development
of network technologies. By contrast, one of the main promises
of the SDN era is to provide an open networking ecosystem,
which can offer various benefits, e.g., deep network service
sharing, cross-product integration, multi-vendor interoperabil-
ity among products and support for open-source software.
For example, SDN app stores4 have emerged to provide a
centralized SDN app management platform for facilitating new
app submission and app acquistion. The implementation of
open networking ecosystems can reduce networking market
monopolies and promote the rapid development of network
technologies.

4Examples include the CoreStack SDN App Store
(https://www.cloudenablers.com/corestack-sdn-app-store.php) and HPE
SDN App Store (https://marketplace.saas.hpe.com/sdn).

2) Network Programmability: One of the advantages of
SDN is network programmability, whereby an SDN controller
can provide NBIs to allow SDN apps to access network
resources and control network behaviors based on their own
needs through underlying programmable protocols (e.g., Open-
Flow). Through these programmable interfaces, each network
operator can write his own programs to inject his desired
network policies into the network. Thus, SDN apps act as
the “network brains” for various network services, e.g., traffic
engineering, mobility, measurement, data center networking,
and security [1].

Although network programmability can simplify network
management, verifying the correctness of SDN apps is difficult
since they often co-occur with complex and varying network
states [23], [46]. Additionally, northbound APIs are often
defined at the abstraction of the network provided by the
southbound protocols that enable this programmability, such
as OpenFlow, which operates at a very low level. Thus, apps
must perform reasoning on network states based on numerous
flow rules to solve problems. To reduce the complexity of
network programming, many solutions currently proceed from
low-level flow languages to high-level abstract languages [47],
such as Frenetic [24], Pyretic [48] and PGA [49]. These high-
level programming languages can simplify and even remove
numerous processes in flow rule orchestration (e.g., through
the elimination of overlapping rules and priority ordering)
and thus provide a high-level and efficient abstraction layer
for apps. This advancement in network programmability has
further enhanced the development of SDN.

3) Southbound Protocol: SDN is often linked to the Open-
Flow protocol, which emerged from an academic experiment
in 2008 [6]. Over the past few years, OpenFlow has become
the predominant SDN southbound protocol and has directly
affected the development and implementation of the SDN ar-
chitecture. An OpenFlow switch contains an OpenFlow agent
and a datapath built on common hardware [40]. The OpenFlow
agent is responsible for all operations involving OpenFlow
messages, such as generating and sending Packet In messages
for newly arriving packets, receiving and installing OpenFlow
rules from the controller, and generating barrier messages
for rule5 installation. The datapath is a pipeline of the flow
tables, the group table and the forwarding ports, with which
the switch can perform match-action processing for incoming
packets. The proposal of OpenFlow has resulted in simpler and
more open switches and has enabled network operators to dive
deeper into traffic forwarding since they can send flow-level
instructions to switches for packet manipulation.

In addition to OpenFlow, ForCES is another protocol that
has been attracting significant attention [50]. Its goal is also
the separation of the CP and DP; in ForCES, this goal is
achieved through the definition of a set of protocols (e.g.,
routing protocols and signaling protocols) and a model [51]
that is necessary to separate these planes. The model is a
modeling language (ForCES model) that allows developers to
define their own abstraction models to control traffic activities

5We use the term “rule” to refer to an OpenFlow flow rule which is also
called an OpenFlow flow entry.



1553-877X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2018.2868922, IEEE
Communications Surveys & Tutorials

YU et al.: FAULT MANAGEMENT IN SOFTWARE-DEFINED NETWORKING: A SURVEY 5

APP

CP

DP

Fault  
Section III

Fault Diagnosis 
Section V

Fault Recovery & Repair 
Section VI

Fault Tolerance 
Section VII

Incorrect program 
implementation

Policy flaw

Policy violation

Information 
mistranslation

Inconsistent rule 
installation

Functional defect

Inconsistent ctrl 
state

State rollback

Configuration repair

Controller placement

Data traffic tolerance

State rollback

Program repair

Module coordination

Operation isolation

Policy composition

White-box verification

Conflict verification

Network interactive 
debugging

Data agent testing

Trace route

Translation 
verification

Software-based 
debugging

Black-box testing

System Monitoring 
Section IV

Probe packets

Traffic statistic

Software behaviors

NBI messages

Configuration
verification

Testing & evaluation

Control traffic 
tolerance

Incorrect event
processing

SDN Element

SBI messages

Formal probe testingMisconfiguration

Component 
redundancy

Component 
redundancy

Fig. 2. A two-dimensional taxonomy of SDN fault management solutions in the academic literature. These solutions are classified into four tasks (i.e., system
measurement, fault diagnosis, fault recovery and fault tolerance), which are presented along with the fault classification on the horizontal axis, and a bottom-up
approach for discussing each task for SDN fault management is represented on the vertical axis. Note that the structure of our paper is based on this taxonomy.

in the DP [50]. Moreover, CP/DP separation is also achieved
in many other protocols, such as OVSDB [52], NETCONF
[53], and Protocol-Oblivious Forwarding (POF) [54]. These
protocols also provide flexible APIs for the control of packet
forwarding or configurations (we refer the reader to [1] for
detailed discussions). However, although these southbound
SDN protocols are powerful and vendor agnostic for network
programmability, they provide open programmability only in
the CP; the packet parsing and header field matching in the
DP still depend on specific network protocols, e.g., VLAN
and NvGRE [42]. This is also why these specifications need
to ensure passive evolution to support more network require-
ments; however, this capability often suffers from a tedious
development cycle for updating switch software and handling
backward compatibility issues [42], [55], [56].

Fortunately, some efforts have been made to address this
issue, in protocols such as POF and P4. POF was proposed to
enable a protocol-obvious SBI that can remove any protocol
dependency using a low-level forwarding instruction set (FIS).
By defining instructions in the FIS, POF simplifies the process
of packet header parsing to a controller task. P4 is similar to
POF and has the same goal of extending SDN programma-
bility. P4 is a high-level language for configuring switches
and enables network operators to specify both packet parsing
and processing in the DP. These protocols further improve the
programmability of SDN for both forwarding logic and packet
parsing and reduce the complexity of switch development.

4) Network control capability: The DP provided by current
SDN southbound protocols is powerful enough to satisfy
various layer 2/3 (L2/L3) network demands. However, in
modern networks [39], [57], many more complex middleboxes
or network functions (NFs) (e.g., load balancing, deep packet
inspection, and firewalls) are combined with L2/L3 forwarding
devices (e.g., switches and routers) to offer highly specialized

network services and more powerful networking capabilities.
The packet processing in many NFs is often stateful (also
called context-dependent) in nature and is based on historical
packet information [39], e.g., packet connection contexts, local
link states, and port traffic loads.

Unfortunately, due to the switch-to-controller signaling load
and processing latency induced by the split architecture and
centralized control, the SDN paradigm faces difficulties in
managing such stateful networks [58]. In addition, flow-rule-
based network control can only deal with basic L2/L3 NFs,
which may cause SDN to be able to obtain only limited
visibility of the entire network [58]. Recently, many solutions
[58]–[62] have been proposed to overcome this issue. These
solutions extend the DP implementations to offload some
stateful traffic processing and control tasks to be handled
directly within switches, such as by adding a state table for
stateful traffic processing [58]–[60] or modifying the NFs
to insert tagging policies for steering traffic via flow rules
in switches [61], [62]. Nevertheless, to satisfy additional
network demands, the further extension of the network control
capability of SDN still requires greater attention.

D. Fundamentals of SDN Fault Management
In this subsection, we describe the fundamentals of SDN

fault management. For a network, a failure is the inability of
the network or some component thereof to perform required
functions; an error is a mistake made based on human actions
or other factors that produces an erroneous result; and a fault,
or more commonly a “bug”, is a manifestation of an error in
the form of an incorrect condition or defect that can cause the
network to behave in an unintended manner. Thus, the result of
an error is a fault, and a fault can lead to a failure. For example,
a network operator may modify the OpenFlow rules in some
OpenFlow switches without notifying the controller, which can
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TABLE II
SDN FAULT CLASSIFICATION

SDN Element Fault Short Description Manifest Symptoms Root Causes

Data Plane

Network misconfiguration Incorrect configurations in the DP. Network failures1. Flaws in the control logic and bugs in
switch hardware and software.

Inconsistent rule
installation

Rules in the forwarding table are not
consistent with the controller’s view.

Inconsistent network states. Inconsistent switches, coding mistakes,
hardware errors and external operations.

Functional defect Missing features and or poor compatibility
or interoperability.

Missing error messages, easily
triggered undesired shutdown,
message reordering and invalid
requests etc.

Inconsistent and/or incorrect
implementations of OpenFlow
specifications.

Control Plane

Policy violation Installed policies violate the network
invariants or operators’ specifications.

Network failures. Policy flaws, policy conflicts, policy
mistranslations and coding mistakes in the
AP/CP.

Policy conflict Policies from different apps conflict with
each other.

Inconsistent network states and
component crashes.

Independent development.

Information
mistranslation

Incorrect translation of policies into rules
or abstract network states.

Inconsistent network states. Logic errors and coding mistakes.

Inconsistent controller
states

Different controllers in a cluster execute
different actions when processing the same
event.

Inconsistent controller states and
actions in response to events.

Design and logic flaws and software bugs.

Incorrect event processing External/internal events cannot be
processed properly.

Abnormal warnings or errors,
service delays or interruptions,
abnormal network states and
invalid access.

Design and logic flaws and coding
mistakes.

Application

Incorrect program
implementation

Apps process network events incorrectly. Silent discarding of messages,
abnormal event responses and
unexpected network states.

Coding mistakes and logic flaws.

Policy flaw Policies in apps violate the network
properties or operators’ specifications.

Violations of invariants and
unexpected network states.

Coding mistakes, insufficient system
knowledge and misplaced assumptions.

1 Detailed classification is presented in Table III.

lead to an inconsistent rule state between these switches and
the controller. This fault may then lead to a network failure
(e.g., a forwarding loop) as the network updates.

The occurrence of faults, errors, and failures is the most
common and direct avenue through which the reliability of
SDN is undermined. Fault management is the process of
detecting, localizing, resolving and preventing faults [21], [22].
Thus, the design of suitable fault management solutions is in-
dispensable for achieving reliable SDN deployment. Based on
the taxonomy of fault management techniques for distributed
systems [21], we divide the SDN fault management process
into four tasks, each of which makes distinct contributions
to SDN reliability. Our survey is conducted based on the
following four tasks:

• System Monitoring: to monitor and trace system behav-
iors and collect statistical data with different granularities
according to specified monitoring metrics;

• Fault Diagnosis: to detect possible faults and localize
their root causes from collected data;

• Fault Recovery and Repair: to reconfigure or recon-
struct a system or its components after faults have oc-
curred;

• Fault Tolerance: to prevent faults that have occurred in
some components from affecting other components or the
entire system or to reduce the damage they cause such
that proper operation will continue.

E. Taxonomic Framework

For clarity in presenting our fault management survey, we
define a two-dimensional taxonomic framework (shown in Fig.
2) as an overview of the survey structure. This framework is
specifically designed for categorizing SDN faults and related
fault management solutions. We list the fault classification and

the four fault management tasks in the horizontal dimension,
and we group corresponding solutions to these four tasks into
subtasks in the vertical dimension according to their basic
methodology. Note that in the vertical dimension, we do not
follow the order of the layers in the SDN architecture, namely,
the DP, CP and AP; we prefer to classify faults and their fault
management techniques at the DP, CP and app levels. This
is because the app level represents both apps in the AP and
control programs in the CP, which can help us to distinguish
faults due to coding mistakes in apps from those due to system
flaws in the CP and thus to describe SDN reliability issues
more clearly.

III. FAULT ANALYSIS AND CLASSIFICATION

Given the background on SDN and fault management, we
now discuss the main faults in the SDN stack, which manifest
with different symptoms and have different root causes. In Ta-
ble II, we summarize all analyzed faults in SDN with a bottom-
up classification, since abnormal network behaviors commonly
occur in the DP, and we present concise descriptions of these
faults along with their symptoms and root causes.

A. Data Plane Faults

As discussed in Section II-A, SDN southbound protocols
can provide a simple network device with a data agent and a
datapath for processing and forwarding packets, such as the
OpenFlow agent and match-action pipeline in an OpenFlow
switch. Faults in these two components or in the device
hardware can potentially induce abnormal network behaviors,
i.e., network failures. These network failures are deviations
from typical network properties and are common and frequent
in computing networks. According to their characteristics
with respect to packet processing, they can be divided into
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TABLE III
NETWORK FAILURES

Category Short Description Symptom Definition

Forwarding Abnormal behaviors
in packet forwarding.

Reachability failure Given a starting location and a flow, packets of this flow do not ultimately reach
their destination [27], [28], [63].

Forwarding loop Given a flow, its forwarding path forms a loop such that packets of this flow will
ultimately be forwarded to their originating hosts [27], [28], [64].

Blackhole Given a forwarding path, the packets traversing this path are absorbed and
dropped by some abnormal nodes (e.g., switches and routers) along this path [20],
[27].

Waypoint routing Given two nodes in a network, the traffic between them always passes through a
“waypoint” node [19], [64].

Incorrect slice isolation Given two traffic groups (e.g., VLAN-based subnetworks), the actual network
behaviors between them violate operators’ desired isolation properties [19], [20].

Long path length The length of the actual forwarding path of a given flow is greater than expected
[19].

Transformation Incorrect packet
transformation.

Incorrect packet
changes

Some of the bits of a packet’s header or payload are rewritten incorrectly [65],
[66].

Packet tunneling errors A packet is encapsulated or de-encapsulated into a new packet with an incorrect
header for tunneling (e.g., IP-in-IP or MPLS) [66], [67].

Incorrect packet
splitting/coalescing

Something is done incorrectly in traffic processing across multiple packets, e.g.,
TCP segment coalescing/splitting, IP fragmentation or payload combination [67].

Dynamic
Dynamically or
randomly abnormal
behaviors.

Link congestion The utilization of links exceeds a certain threshold, resulting in queuing delays,
jitter, connection jams and packet loss [28].

Unexpected traffic loss Packets are dropped at an unexpected destination or over a random period due to
switch failures, link congestion and attacks [15], [28].

Intermittent connectivity Some network nodes drop users’ connections at random intervals [28].
Link/packet delay The time that packets take to traverse from their sources to their destinations is

longer than usual [28].
Load imbalance Given a cluster, the traffic load on each host is unbalanced [19], [68].

three categories: forwarding issues, transformation issues and
dynamic issues. Forwarding issues are abnormal behaviors in
packet forwarding, such as reachability failure, forwarding
loops, waypoint routing, host isolation, blackholes, and long
path lengths. Transformation issues involve incorrect packet
transformation, such as incorrect packet header modification,
packet encapsulation or de-encapsulation errors, and incorrect
packet replication. Dynamic issues are abnormal behaviors that
occur dynamically or randomly, such as unexpected packet
loss, link congestion, link latency, load imbalance, and inter-
mittent connectivity. We summarize all these network failures
in Table III. In this subsection, we discuss three main types of
faults in the DP, all of which can induce such network failures.

1) Network Misconfiguration: The main cause of network
property deviations is incorrect network configurations, i.e.,
network misconfiguration. Network misconfiguration can in-
duce various unexpected network states such as reachability
failures and forwarding loops [19], [20]. These configuration
issues are the most common problems in computing networks,
but they are thorny to resolve because there may be a large
number of configuration files to check. SDN decouples the
CP and DP and uses a centralized controller to configure
the DP. Although this split architecture can simplify network
configuration, it also makes configuration issues more complex
since their root causes may be cross-layer in nature. For
example, a missing rule may be caused by policy conflicts
in the CP [25], [69], software defects in switches [15], [70],
attacks [71], [72], or even careless external rule modification
[73]. Thus, we need to consider these challenges and resolve
such faults through more cross-layer analysis. Note that the

details of issues concerning the CP that can induce network
misconfiguration are discussed in Section III-B, whereas other
faults in the DP are discussed below.

2) Inconsistent Rule Installation: At first glance, the causes
of network failures appear to be network misconfiguration.
However, even when the configurations generated by the CP
are correct, the actual networks implemented by flow rules
in the DP may still violate network operators’ requirements
[18], [28], [70]. We call this issue of inconsistent rules in
the DP inconsistent rule installation, which means that the
actual rules installed in a switch are not consistent with
the designated configurations generated by the controllers.
Inconsistent installed rules may not necessarily lead to network
failures; rather, they can directly cause undesirable forwarding
behaviors and undermine the controller’s network visibility in
the DP, which can then lead to incorrect policy actions. More
seriously, configuration correctness checks relying on the CP
view [19], [20] may lose their effectiveness.

For clarity, we classify inconsistent rule installation faults
into two types: rule loss and rule reordering [18], [28], [70].
Rule loss refers to a fault whereby some flow entries in flow
tables are lost without the controllers being notified [18], [28].
Rule reordering occurs when the actual order of the flow
entries in the flow table does not follow the designated order
and the priorities of some rules overlap with others [18], [70],
[73]. The root causes of this type of fault vary from faulty
internal software implementations in the switch to external
misoperation. We summarize as follows:

• Inconsistent data agents: The implementations of SDN
southbound protocols in different switches may be incon-
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sistent with each other and thus may deal with configura-
tion messages generated by controllers in different ways
[18]. For example, the given order of the rules generated
by a controller may be arbitrarily reordered in a switch
to maximize its performance [18], [74].

• Functional defects: As a software entity, a data agent
will inevitable be wrong at times. For example, software
defects in an OpenFlow agent can directly impact rule
installation, causing rules to be dropped or even modified
[28]. Note that in addition to the ability of functional
defects to impact rule installation, more issues concerning
data agents will be identified in Section III-A3.

• Hardware faults: This is a typical and intractable problem
in network hardware infrastructures. Hardware faults can
be divided into soft errors (e.g., a bit flip in memory) and
hard errors (e.g., a bit that is always bad). Whereas soft
errors are temporary and can be eliminated or repaired
by rewriting, hard errors are permanent and cannot be
repaired. Soft errors can lead to rule installation failures
and rule tampering at run time [15]. Hard errors in
memory can also lead to rule loss and even some feature
crashes. This means that some hardware components or
all of the hardware may need to be replaced.

• External operations: The forwarding tables in a switch
can be modified not only by SDN controllers but also by
external operations (e.g., attacks or manual configuration
activities) that may not be noticed by the controller
[72], [73]. By hijacking the controller or accessing the
control channel, an attacker can insert or modify flow
rules to redirect traffic elsewhere [33], [34], [71], [72]. In
addition, manual rule modification by means of the con-
figuration tools in switches (e.g., ovs-ofctl in Open
vSwitch) can also potentially induce rule inconsistencies
since it is necessary to carefully inspect the existing rules
to avoid unexpected overriding any of them [73].

To solve rule inconsistency issues, one feasible approach
is to design positive acknowledgments for per-rule instal-
lation. Unfortunately, the OpenFlow specification does not
provide such a mechanism since doing so would increase
its complexity [40], [75]. However, OpenFlow does provide
barrier messages for the controller that serve similar functions,
e.g., ensuring message ordering and notification of completed
operations [40]. When a switch receives a barrier message, it
must finish executing all previously received commands. This
is a high-level negative acknowledgment mechanism and thus
is inefficient and error-prone for verifying the success of rule
installation. Since OpenFlow does not provide lost-message
detection and recovery mechanisms [40], any lost barrier reply
message may lead to failures in control-data state consistency
[75]. More seriously, as discussed in [18], [76], [77], these
barriers may not always be implemented in switches since
the delay imposed by confirming rule installation may cause
prolonged packet loss. It is safe to conclude that the occurrence
of inconsistent rule installation in the DP is quite possible, and
therefore, we must pay greater attention to this issue.

3) Functional Defects: When implementing network de-
vices, device manufacturers often follow standard network
protocols or specific network requirements to develop their

software, i.e., data agents. Software-based data agents may
contain defects that can cause various network failures such
as violations of protocol compliance and missing features. We
refer to a fault of this type in the DP as a functional defect
in this paper. We use an OpenFlow agent as an example to
discuss such faults, considering two root causes, and we then
extend the discussion to the more complex DP.

The first cause of functional defects is incorrectness and
incompleteness of the OpenFlow specification implementation.
Defects in OpenFlow agents are inevitable and can affect nor-
mal network operations following the OpenFlow specification.
This issue will be aggravated as OpenFlow evolves since many
new features will need to be implemented in agents to support
more network management functions. As tested in [55], several
defects have been found in OpenFlow agents; such defects
include incorrect message dropping, missing features, missing
error messages, OpenFlow agent termination with an error,
different orders of message validation, and statistic requests
silently being ignored. These defects can directly cause in-
consistent rule installation by blocking the installation of a
rule or arbitrarily changing some fields in a rule or the order
of rules. In addition, they may break the correctness of the
operational state between the CP and DP by causing barrier
messages to be dropped or incorrect barrier messages to be
sent to the controller due to incorrect barrier implementation
[55], which can, in turn, induce incorrect policy actions and
exacerbate inconsistent rule installation.

The other cause is the poor compatibility and interoper-
ability among different OpenFlow switches. Currently, the
OpenFlow specification has evolved to version 1.5.1, which
can support more functions than previous versions could [40].
Specification version growth is generally beneficial; however,
the long debugging cycle for switch software updates makes it
difficult for switches to keep up with the pace of specification
growth. Switch manufacturers need to invest more manpower
and material resources in upgrading to new OpenFlow ver-
sions, and they may experience an imbalance between costs
and benefits. Currently, most switches only support OpenFlow
1.0 or 1.3 and few can support more versions [78]. The
resulting problem of poor compatibility and interoperability
not only limits the features of networks built on the basis
of these switches but also makes these switches unable to
work together, in contrast to the original goal of OpenFlow
[6]. The need for different switches to be able to work
together is a serious concern. For example, in a data center or
cloud environment, hardware switches are responsible for host
interconnections, and software switches are responsible for
the intraconnections among the virtual machines in a host or
between hosts in overlay networks. In [18], three commercial
OpenFlow switches (5406zl, P-3290 and 8132F) were tested
and found to exhibit different characteristics with respect to
rule modification, rule reordering for updates, and the time
of synchronization with the CP. The poor compatibility and
interoperability of OpenFlow switches make them difficult to
manage and can cause further issues such as rule loss and
rule reordering. This issue also is one of the reasons why
OpenFlow-based SDN has not achieved fast adoption.

These above-mentioned issues concern forwarding rules.
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However, for complex NFs or software-defined DPs (e.g., P4,
POF or Click [79]), the issues may be different in nature,
and analyzing forwarding rules to check the network behavior
may be inefficient. On the one hand, many NFs are stateful
and depend on the flow history for their processing of network
traffic. Although many approaches have attempted to add SDN
dimensions for the steering of flows in NFs [62], [80]–[82],
current SDN technology does not offer a sufficient control ca-
pacity for NFs. To find the root causes of network failures, we
may need to analyze the actual implementations in the source
codes of these NFs. On the other hand, many new software-
defined specifications can provide greater programmability for
new DPs. With these specifications, a network operator can
design a custom DP in a flexible manner and implement
specific functions for satisfying any network demand. These
specifications are powerful but cause faults that occur in the
DP to be more complex. Logic errors or design flaws in
DP programs may result in network failures, and thus, such
programs also require careful inspection.

B. Control Plane Faults

The SDN controller is a software entity that is not bug-free.
Software errors in the CP can lead to a controller behaving
abnormally or even crashing, and they can also induce network
problems in the DP [16], [83]. In addition, flaws in critical de-
sign and logic in SDN controllers can degrade SDN reliability
[84]. When efforts are made to satisfy the requirements related
to the management of highly dynamic and flexible networks,
the incidence of flaws in controller software may increase
because the needs of large-scale complex software programs
are driving those networks. Insufficient domain knowledge,
incorrect evaluations of service requirements and network
capabilities, poor assumptions about the network environment
and unexpected concurrency issues [84] all make faults in the
CP inevitable. Since the CP is the core of an SDN network,
the effects of CP faults are felt throughout the network.

CP faults can not only affect the reliability of the CP itself
but also harm the whole network. In this survey, we categorize
faults in the CP into four types: policy violation (Section
III-B1), state mistranslation (Section III-B2), inconsistent con-
troller states (Section III-B4), and incorrect event processing
(Section III-B3).

1) Policy Violation: As discussed in Section III-A, although
some issues in the DP can induce incorrect network configu-
rations, their main causes, such as incorrect network policies
and policy mistranslations, originate from the CP. This is an
extremely common issue in SDN networks, and a number of
studies on fault diagnosis (e.g., [16], [19], [20]) and recovery
(e.g., [85]–[87]) have resulted in the design of various policy
verification mechanisms to address this issue. In these works,
a list of fundamental network-wide invariants is commonly
considered in combination with network operators’ desired
properties as the basis on which to verify the correctness of
the generated configurations. An invariant represents a basic
correct network state (e.g., reachability or being loop-free),
and a violation of an invariant can directly induce abnormal
network states. Thus, we call this type of fault in the CP, in

which the configurations generated by the controller violate
the operators’ designated network policies, a policy violation.

We surveyed several academic publications [16], [23], [83],
[88]–[92], based on which we can summarize the root causes
of policy violations as follows:

• Policy flaws: Logic errors or human mistakes in policy
writing can directly violate desired properties and result
in network failures [23], [88], as will be described in the
next section III-C.

• Policy conflicts: A policy conflict is a situation in which
two network policies have overlapping domains for net-
work manipulation [89], [90]. This is a common issue
in the CP since SDN allows apps from different vendors
to coexist in the same CP for network management; it
is difficult to ensure that there are no conflicts among
their policies, and this can lead to race conditions, e.g.,
competition for shared network resources (e.g., link band-
width, topology or switch CPUs) [25], [69] and rule
priority overlap [25], [69], [93]. In OpenFlow networks,
this issue manifests as flow rule conflicts, in which two
flow rules can match the same flow but may dictate
different actions. The OpenFlow specification defines a
priority to distinguish these rules such that packets can
be matched only by the rule of higher priority. However,
when network operators want to deploy new policies into
networks without impacting existing network services, if
a newly generated rule is assigned a higher priority than
an existing rule due to insufficient or incorrect domain
knowledge on existing network policies or incorrect as-
sumptions on the operating environment, this can cause
a rule to overlap with existing network services. In turn,
this can result in a network state that is inconsistent with
the operators’ intentions [89], [90].

• Policy mistranslations: After being generated by apps,
policies are translated by a controller into low-level
instructions for installation in the DP. Errors in this trans-
lation process can lead to the generation of unexpected
rules, which may also be inconsistent with the operators’
desired properties [91], [92]. This problem is further
analyzed in Section III-B2.

• Incorrect event processing: Bugs in CP components (e.g.,
OpenFlow packet handler [16], [17], [83] and link discov-
ery [16]) can cause incoming events/messages from apps
to be processed incorrectly; this may result in incorrect
decisions regarding network updates. We discuss this
issue in detail in Section III-B3.

2) Information Mistranslation: Controllers are responsible
for providing abstractions of the network state to upper-layer
apps and translating policies from apps into low-level instruc-
tions for the DP. We use the term “information mistranslation”
to refer to a fault in which states or policies are mistranslated.
These faults are caused by errors (e.g., logic flaws, coding
mistakes and software misconfiguration) in state abstraction
and policy translation. Such a fault may have a very small
impact on the common control logic implemented based on
the low-level abstraction (e.g., OpenFlow) of the DP. However,
for high-level programming languages [24], [48], [94], [95]
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that aim to simplify network programming in SDN, their
susceptibility to such faults is one of the main hindrances
to their success. These programming languages constitute the
main paradigm for SDN app development and enable network
operators to focus on which networks they want to implement
without needing to consider how to implement them [24],
[47]. For apps written in high-level programming languages,
a compiler, or more precisely a language interpreter is applied
to translate the “what” (i.e., the high-level properties defined
in the apps) into the “how” (i.e., low-level flow rules or other
configuration commands) based on the network abstraction.
This, however, is also not a bug-free process and can lead
to mistranslations of information (i.e., policies and network
states) for the DP and AP as well as inconsistent states and
network failures. Verifying the correctness of the process of
state translation in the CP is necessary to ensure cross-layer
state consistency in SDN.

3) Incorrect Event Processing: In the SDN paradigm, each
component (e.g., switches, controllers and apps) leverages
request and response events to maintain contact with the other
planes. The CP can receive external events from switches
and apps as well as internal events (e.g., master election,
distributed database reading/writing or component collabora-
tion) among controllers, and it will follow its inherent logic to
process each received event and generate responses to be sent
to the originating component or forwarded to others. Design
and logic flaws or software bugs in controller subcomponents
can directly result in the generation of abnormal actions or
responses, delays in the responses to other events or even
dropped events [16], [17]. We refer to such faults as incorrect
event processing.

To describe this type of fault more intuitively, we present an
example of a bug in POX found in [16]. In POX’s discovery
module, there is a logic error for Packet In handling that
can lead to a race condition in which a LinkEvent event is
first sent to apps rather than to SwitchUp when a premature
Packet In is forwarded to POX. Bugs in the CP are very
common and varied; for example, each component of the
OpenDaylight controller contains many bugs6, and numerous
new bugs continue to emerge as the controller evolves. The
occurrence of such a fault in a network can lead to many
issues such as abnormal network behaviors, missing controller
features, incorrect actions in apps, invalid controller access,
and even crashes of a component or an entire controller. To
guarantee SDN reliability, we need to design more effective
fault diagnosis techniques for finding faults in the CP and
fault tolerance techniques for preventing component failures
or system crashes.

4) Inconsistent Controller States: To achieve high avail-
ability and scalability, the SDN CP is currently designed to be
logically centralized but physically distributed. As a distributed
system, the CP needs complex software to ensure data shar-
ing, state synchronization, module collaboration, and access
management among different CP components. Although a
distributed CP can be used in a large-scale network, errors in

6For detailed descriptions, the reader is referred to the OpenDaylight
Bugzilla (https://bugs.opendaylight.org/).

the distributed control system can induce various failures (e.g.,
distributed database locking, master re-election or inconsistent
event actions), which can impact the network processing
performance of the CP [16], [17].

The root causes of inconsistent controller states are var-
ious and include logic and design flaws, coding mistakes,
concurrency errors, incorrect algorithms, unexpected opera-
tions, hardware failures, and connection interruptions. Note
that these issues arise in most distributed systems, including
SDN controllers, and are difficult to diagnose or prevent. To
resolve such issues, greater effort needs to be applied toward
optimizing and improving the distributed architecture.

C. Application Faults

SDN apps constitute the main “brains” of networks. Each
app implements its own control logic to manipulate networks
by means of either general-purpose languages (e.g., Java, C++
or Python) or domain-specific programming languages (e.g.,
Frenetic [24], Pyretic [48], FlowLog [94] or FatTire [95]).
However, these apps all potentially contain software faults that
can affect the entire network, e.g., incomplete specifications,
incorrect algorithms, design mistakes, programming bugs,
coding mistakes, incorrect installations, and user mistakes. We
divide these faults in apps into two groups: incorrect program
implementations (Section III-C1), which can result in network
events being processed incorrectly, and policy flaws (Section
III-C2) (also called control logic flaws), which can cause
network states to violate operators’ desired specifications.

1) Incorrect Program Implementations: We use the term
“incorrect program implementation” to refer to a fault that is
caused by software bugs or coding mistakes and can induce
unexpected behaviors during run time or when processing
network operations. Such faults are quite common in software
engineering [96] and may be more complex in SDN since SDN
programs often need to reason based on a massive amount
of network information to make forwarding decisions. Any
coding mistakes, concurrency errors, incorrect operations, or
incorrect installations can potentially induce abnormal app
behaviors or even network problems, such as the generation
of requests with incorrect parameters or the mishandling of
network events from the DP or NBI requests [16], [97], [98].
A simple example of an incorrect program implementation is
detailed as follows. To process a new OF Packet In message,
three separate tasks need to be implemented: 1) caching the
message, 2) generating and sending Packet Out messages to
other nodes to find the destination of the message, and 3)
generating Flow Mod messages to install flow rules in related
nodes for guiding traffic consisting of packets of this type.
If the programmer forgets about task 3), packets of this type
will never be forwarded. Because these programs are executed
under conditions of complex network states, diagnosing faults
becomes a thorny issue [23], [46].

2) Policy Flaws: Although programming apps with
domain-specific programming languages can reduce the oc-
currence of incorrect program implementations, insufficient
network knowledge or incorrect assumptions about the net-
work environment can also result in faulty policies. A fault
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of this type is called a policy flaw in this survey. Policy
flaws in apps are the main cause of violations of operators’
desired specifications or fundamental network properties, e.g.,
forwarding loop-freedom, isolation among groups, and basic
reachability. Many research efforts [19], [20], [23], [46] have
focused on identifying these issues from flow rules generated
by the CP or from logic in the source codes of apps; some
tools [87], [99], [100] can automatically produce fault patches
to repair such flaws.

IV. SYSTEM MONITORING

Data are crucial in enabling network operators to promptly
find and comprehend problems that compromise SDN reli-
ability. In this section, we focus on system monitoring for
SDN networks, namely, the tracing of system behaviors and
the collection of data from various SDN components for
fault management. For traditional networks, many network
measurement tools, such as tools for instrumentation (e.g.,
syslog), traffic counting and sampling (e.g., NetFlow, sFlow
and SNMP), traffic mirroring (e.g., wireshark), probe test-
ing (e.g., ping and Iperf), and packet tracing (e.g., IP
traceroute), have been developed for monitoring network
states. Although SDN can provide more opportunities for
advancing these tools, it also poses challenges for system
monitoring because of the multiple software components (e.g.,
data agents, controllers, and apps) and interaction channels
involved in network operations. Several types of data are
involved in SDN system monitoring; in this section, we divide
these data into four types, namely, probe packets, traffic
statistics, channel messages and system events, and discuss
approaches for collecting these data. For clarity, Table IV
summarizes these four types of data and their corresponding
monitoring approaches, their functions and their advantages
and disadvantages for SDN fault management.

A. Probe Packets

As discussed in Section III, the actual behaviors of a
network can be inconsistent with the network configurations
generated by the CP due to rule loss or priority reordering.
Thus, the network snapshots built from control messages are
not fully credible [15]. To address this issue, multiple probe-
based techniques have been developed, in which specific probe
packets are injected into the DP and the probe results are
collected for further forwarding inspection. The approaches
used for the generation and collection of the probe packets in
such monitoring mechanisms can be divided into two types:
test host-based and caching rule-based approaches. A more
detailed discussion of the usage of these probe packets can be
found in Section V-A.

In the test host-based approach, test hosts with testing
agents are deployed around switches, and these test hosts are
responsible for generating probe packets based on specific
testing strategies, collecting the probe results, and then sending
these results to the controllers or to a dedicated analysis server
[28], [101], [102]. This approach allows packet probing to
be performed with minimal interference with normal network

operations; however, it requires additional devices and is
infeasible for large-scale networks.

Instead of using additional devices, the caching rule-based
approach involves writing caching rules into switches down-
stream of the target switch, and it leverages SDN controllers
to generate probe packets and inject them into the DP through
a control channel; these probe packets will subsequently
be trapped by the deployed caching rules [15], [70], [77].
The caching rule-based approach can also be called packet
trajectory tracing [103]–[105], and methods based on this
approach can be divided into three types based on the use of
caching rules. In methods of the first type, caching rules are
used to send matched packets directly to controllers, which
then re-inject these packets to the DP [15]. In methods of
the second type, the packet header information at each hop is
copied to the controller [70], [106], [107]. Methods of the third
type use caching rules to encode path information (e.g., switch
identifiers and path flags) in the header of each probe packet;
when the packet is sent to the controller, this information is
used to decode the forward path of the packet [103]–[105].
This approach can provide more precise data about network
behaviors, but it can also induce traffic overhead in the control
channel and interfere with normal network operations. Due
to the limited memory capacities of the switches, one also
needs to be concerned with the trade-off between the resource
overhead for switches and the accuracy of the measurements.

B. Traffic Statistics
For monitoring network behaviors, traffic statistics are also

an important type of data that can provide necessary in-
formation on the network state (e.g., network topology and
link bandwidth utilization) for network manipulation. Traffic
statistics are often collected and stored in the local storage
of switches in the form of various metrics and are then
proactively reported to or passively extracted by controllers.
This type of monitoring is called network measurement. With
the benefits of SDN, network measurement techniques for
collecting traffic statistics can be optimized in terms of both
accuracy and overhead. In this section, we introduce the
techniques for network measurement in SDN.

1) Traffic Counting: Counting the packets traversing
switches from the memories of those switches, via mechanisms
such as NetFlow, sFlow and SNMP, is a common approach for
collecting traffic statistics. SDN protocols also provide many
types of counters, such as per-port counters, per-rule counters
and per-group counters [40], [41], for collecting traffic statis-
tics. The statistical data collected by these counters can be used
in faulty device localization, traffic matrix estimation, network
anomaly detection and configuration verification [108], [109].

However, these counters do not currently support sampling
and thus can result in high overhead with respect to switch
memory [110]. Moreover, not all counting data are useful
for evaluating certain requirements, e.g., detection based on
time-window data. In addition, to ensure satisfactory network
forwarding performance, these counters can catch traffic events
only at a subsecond rate and update their statistics every
second [111], [112], which is too slow for stringent real-
time monitoring requirements. To address these issues, many
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TABLE IV
SDN SYSTEM MONITORING FOR FAULT MANAGEMENT

Data Source Short Description Collection Approach Functions Characteristics
Probe packets Probe packets are injected to

test the actual network
behaviors.

Recording by test hosts or
caching rules in switches

Enable inspection of the actual network
forwarding behavior in the DP.

High accuracy and potential link overhead.

Traffic statistics Network traffic statistics
represent network states.

Traffic counting Provide coarse network monitoring. Easy deployment and low accuracy.

Packet mirroring Provide more detailed packet information
for external network analysis.

High accuracy and high overhead.

End-host monitoring Provide network measurements from
endpoints.

High scalability, fine grainularity and
massive volume.

Channel
messages

Interaction messages are
exchanged among the three
planes.

Recording by controllers or
an external monitoring proxy.

Build snapshots of the whole SDN system
for network maintenance and verification.

Low computing cost, low signal load,
potentially low credibility and potential for
interference with network operations.

Software
behavior

Software behavior is reflected
by program executions and
state changes in control
software.

Logging, instrumentation. Used to implement fault debugging and
troubleshooting for SDN software.

High maturity, low accuracy and massive
volume.

researchers have combined SDN protocols with traditional net-
work measurement mechanisms to reduce memory overhead
and improve measurement granularity [113], [114]. To reduce
the overhead imposed by traffic counting, Hu et al. [113]
implemented a network tomography algorithm in which only
a few OpenFlow rules are set up for direct measurements and
other flow data are inferred based on SNMP link counters.
OpenSample [114] leverages sFlow packet sampling to provide
near-real-time measurements.

There are also other tools, such as UMON [29] and
StateMon [115], in which the focus is placed on decoupling
measurement policies from forwarding policies to provide
flexible and fine-grained measurements. These tools rely on
an additional monitoring table with more fine-grained match-
action entries (e.g., TCP FIN, TCP SYN and ACK, which
are not supported by OpenFlow counters) in the OpenFlow
flow table pipeline for monitoring specific flows. With this
table, measurement control can be decoupled from forwarding
control, and specific APIs can be provided to allow network
operators to specify custom measurement policies. Based
on this idea, several highly efficient measurements, namely
sketch-based measurements [30], [116], [117], have been pro-
posed. A sketch is a programmable data structure for collecting
and storing flow information in the DP and can effectively
reduce the overhead of data collection. It can also improve
the flexibility of measurement deployment and support more
measurement features, e.g., bit checking, different levels of
measurement granularity, and specific probabilities [30], [116],
[117]. In addition, with the emergence of P4, this approach can
be easily implemented in network devices.

2) Packet Mirroring: Since the implementation of the above
approaches often requires switches to be modified, these
approaches are not supported by all types of devices in today’s
networking world. Port mirroring is an alternative monitoring
approach that is supported by most modern switches. When
port mirroring is set up, a switch will send a copy of every
network packet seen on one traffic port to another measure-
ment port for external traffic analysis. Port mirroring can be
more easily implemented in SDN networks; specific port or
flow mirroring rules can be installed in switches such that the
matching packets will be copied to a network analysis agent

[106], [107]. Here, we call this approach packet mirroring.
Packet mirroring has been applied in many SDN fault

management solutions to enable accurate network analysis
[70], [106], [107]. By installing mirroring rules in switches,
ndb [106] can tell switches to create a “postcard” (which
consists of a packet header, output ports, the version number of
the matched rule and a switch ID) for each packet traversing a
switch and send this postcard to a packet history analysis agent
for fault identification. A similar idea is also implemented in
Planck [118] and EverFlow [119]. Planck focuses on mirroring
the traffic at ports in a single commodity switch to a directly
attached server through the installation of mirroring rules; thus,
millisecond-level network measurement can be implemented.
EverFlow uses mirroring rules with more matching fields (e.g.,
TCP SYN, FIN and RST) to collect network packets in a large
data center network. Packet mirroring can provide detailed
network information for the detection of various abnormal
network states, e.g., arbitrary packet loss, link congestion, and
forwarding loops. However, high overheads are associated with
both mirrored packets and “postcards”.

3) End-Host Monitoring: The aforementioned approaches
are all implemented in switches; thus, they require switch
support, and they can lead to increased memory consumption
and computing loads for the switches. Recently, several pro-
posals have pushed network measurement tasks to end hosts,
with a uniform interface at each end host and a concentrated
controller for processing any queries; this approach can reduce
traffic overhead in terms of SDN network resources [112],
[120], [121].

HONE [120] combines end hosts with switches to imple-
ment certain measurement tasks, thereby providing a uni-
form interface for querying the states of network devices
via the concentrated controller. With end-host monitoring,
a wide variety of management tasks, such as performance
diagnosis, the collection of TCP statistics and link utilization
calculations, can be implemented. However, computing these
data locally may result in a lack of fine-grained control. To
address this issue, Felix [121] generates matching filters from
high-level user queries and routing configurations to control
local data processing. Trumpet [112] focuses on implementing
end-host measurements at line speed for a wide variety of
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monitoring use cases, e.g., detecting correlated bursts and
losses, identifying the root causes of transient congestion, and
detecting short-term anomalies.

C. Channel Messages

SDN maintains several types of channel interfaces among
its components, including the SBI, NBI, EBI and WBI.
By monitoring messages over these channels (namely, chan-
nel messages, including SBI messages, NBI messages and
EBI/WBI messages), the interrelations among the planes can
be reconstructed and used to provide global visibility of the
whole SDN system for fault management [16], [17], [20], [88],
[97].

1) SBI Messages: In the SDN paradigm, SDN controllers
leverage southbound protocols (e.g., OpenFlow and ForCES)
to manage network devices and implement custom network
services in the DP. Monitoring SBI messages can provide
visibility of all network configurations and state changes in
the DP [19], [20]. For example, snapshots of the network
(including the network topology and the forwarding function
of each device) can be constructed from these messages and
then used to verify the correctness of the network states via
advanced formal verification or other checking techniques, as
discussed in Section V-A1. In addition, these data can be used
to validate the correctness of controller actions for southbound
API requests [16], [17].

To collect the messages sent over the control-switch chan-
nel, a common approach is to use the controllers to record
them. However, this is useful only for open-source SDN
controllers and may, in turn, increase the computing costs
and signaling loads for the controllers. Another approach
is to deploy an external collector proxy on the control-
switch channel to intercept and replicate these messages and
subsequently send them to an out-of-band server for further
analysis [19], [20]. Although this approach can avoid the
imposition of additional overhead on the controllers, it is
difficult to ensure that no additional latency will be incurred
for communications between the controllers and switches. In
addition, the occurrence of incorrect rule installations in the
DP (Section III-A2) can affect the credibility of the network
snapshots constructed from SBI messages.

2) NBI and EBI/WBI Messages: Similarly, NBI and
EBI/WBI messages also are interaction events, but NBI mes-
sages are used for communications between the CP and AP,
whereas EBI/WBI messages carry communications among
distributed controllers. These messages can also be collected
using the same approaches applied for SBI messages and can
be used to analyze the correctness of the corresponding inter-
actions (e.g., policy logic updates, message requests/responses,
data synchronization, and monitoring/notification) between
controllers and apps or among controllers [16], [17], [88], [97],
[98]. However, unlike for SBI messages, there is currently
no standard for messages exchanged through these two types
of interfaces, and various common APIs or custom protocols
are implemented in different controller platforms [1]. This
situation may result in low compatibility and interoperability
among different controllers and apps. Thus, the main challenge

in implementing an efficient monitoring mechanism for NBI
and EBI/WBI messages is how to optimize that mechanism
for different APIs to achieve the maximum performance.

D. Software Behavior

As a software entity, an SDN controller often consists of
numerous program codes, which constitute various modules
and are distributed in different machines to guarantee high
availability (HA) and scalability. The monitored actions of
these program codes can be used to explain the software
behaviors of controllers, such as how external events (e.g.,
Packet In and NBI requests) are handled, how network ser-
vices are materialized into underlying network devices, and
how these controllers maintain their scalability and efficient
network control capabilities [16], [17]. These data are crucial
for finding and understanding problems in controllers that
induce network anomalies or function failures; such problems
appear to be particularly important for the development of
SDN controllers in this immature stage of SDN.

In software engineering, various profiling techniques [96],
[157], [158] have been developed for monitoring software be-
haviors, e.g., program logging, profiling and code instrumen-
tation. Program logging is the most popular tool for recording
system events and can be used to achieve basic debugging
functions. The logging data can be used to construct control
flow graphs or program workflows to determine the root causes
of faults that have occurred [158]–[160]. Since many controller
platforms (e.g., ONOS and OpenDaylight) are implemented
based on distributed architectures, many advanced software
tracing tools can be applied in SDN networks, such as Google
Dapper [158], which is designed for large distributed systems
and implemented based on code instrumentation. Interested
readers are referred to [96] for more details on monitoring
and debugging mechanisms in software engineering.

V. FAULT DIAGNOSIS

Troubleshooting networks is always a difficult and arduous
task, especially when combined with the multi-tier architecture
and complex network states in SDN. Given the detailed SDN
fault characteristics described in Section III and the SDN sys-
tem monitoring techniques discussed in Section IV, we provide
an overview of the currently available fault diagnosis solutions
that have been proposed for SDN networks. As illustrated in
Table V, we classify these fault diagnosis solutions based on
the methodology applied for each element (i.e., at the DP,
CP and App levels) in the SDN stack following a bottom-up
approach. Finally, we close this section by discussing work on
the integration of fault diagnosis for the whole SDN paradigm.

A. Fault Diagnosis for the Data Plane

By properly configuring network devices, network operators
can implement various network services based on specific
requirements. As discussed in Section III-A, faults in the
DP can potentially induce unexpected network states that
are quite different from those desired by operators. Many
network troubleshooting tools (e.g., ping, traceroute and
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TABLE V
FAULT DIAGNOSIS TAXONOMY FOR SDN

SDN
Element

Solution Faults Research Work Manifest Features

DP

Static configuration verification
(Section V-A1)

Policy violations [27], [122]–[124] Analyze network properties based on configurations,
policies or flow rules for correctness verification.

Real-time configuration
verification (Section V-A1)

Policy violations [19], [20], [64]–[66],
[68], [125]–[127]

Verify network behaviors in real time.

Formal probe testing (Section
V-A2)

Inconsistent rules [15], [28], [70], [77],
[101], [102], [128]

Inject probe packets into the DP and inspect the correctness
of the network behaviors reconstructed from the probe
results against with defined invariants.

Route tracing (Section V-A3) Inconsistent rules [72], [103]–[105],
[129]–[131]

Leverage specific rules to encode traffic path information
into probe packets.

Network interactive debugging
(Section V-A4)

Inconsistent rules, policy
violations and protocol
compliance errors

[106], [107], [132]–[134] Debug and analyze network behaviors based on network
observations.

Testing for data agents (Section
V-A5)

Protocol compliance errors [55], [56], [135], [136] Test the compatibility and interoperability of OpenFlow
switches.

CP

Conflict verification (Section
V-B1)

Policy conflicts [74], [89], [90],
[137]–[142]

Resolve race condition problems for all hardware or
software resources or rules.

Controller verification (Section
V-B2)

Information mistranslations and
policy conflicts

[91] Provide verifiers for policy conflicts and information
mistranslations when compiling high-level policy languages.

Software-based debugging
(Section V-B3)

Policy violations, incorrect event
processing and inconsistent
controller states

[16], [83], [85], [143],
[144]

Record network events and replay them to provide
debugging functions.

Controller evaluation (Section
V-B4)

Inconsistent controller states and
incorrect event processing

[17], [145]–[149] Evaluate SDN controllers with test events to identify
abnormal actions or other performance issues.

App

App verification (Section V-C1) Policy flaws and incorrect
program implementations

[23], [45], [46], [97],
[150]–[154]

Verify the correctness of policies specified in apps based on
the desired properties.

App testing (Section V-C2) Policy flaws and incorrect
program implementations

[88], [98] Design black-box testing mechanisms for SDN apps to
check the correctness of their behaviors.

All Integration (Section V-D) All potential faults [92], [155], [156] Strive to provide an overall fault diagnosis framework for
SDN.

tcpdump) have already been proven to be inefficient for SDN
as a newly emerging networking paradigm. In this section,
we discuss fault diagnosis for the DP based on five main
approaches: configuration verification (Section V-A1), formal
probe testing (Section V-A2), route tracing (Section V-A3),
interactive network debugging (Section V-A4) and testing for
data agents (Section V-A5).

1) Configuration Verification: In any networking paradigm,
configuring networks toward desired specifications is an ar-
duous and error-prone process, and SDN is no exception.
Recently, a number of network verification techniques [19],
[20], [27], [122] have been proposed for detecting issues in
SDN network configurations. In these techniques, the network
states (obtained from network configurations or control mes-
sages) are modeled in the form of specific data structures or
formal expressions, and their correctness is verified based on
the desired properties. We categorize these research solutions
into two groups: static verification and real-time verification.
Static Verification: Static verification originated from an early
paper [63] in which the whole network was modeled as
a 3-tuple G = (V,E, P ), where V is the set of devices,
E is the set of links between vertexes, and P represents
the forwarding policies applied on links. By virtue of its
centralized control strategy, SDN can simplify the verification
process by providing global visibility of the whole network.

Header space analysis (HSA) [27] was proposed as a general
and protocol-agnostic framework for statically checking for
configuration issues. In HSA, the packet header space is mod-
eled as a concatenation of bits, and a packet is represented as a
point in the header space, which can support newly emerging
protocols and arbitrary field formats. All NFs are modeled

as box transfer functions, which transform one subspace into
other subspaces, and the entire network is formulated as a
network transfer function and a topology transfer function.
Based on this model, several search strategies are applied in
HSA to identify many configuration issues in the DP.

HSA has been applied in many SDN research articles and
commercial products, [16], [19], [133], [134], [141]. However,
HSA has some limitations, as follows: 1) Low accuracy: It is
difficult to distinguish different packet types, e.g., IP and TCP,
with the HSA model. 2) Low scalability: HSA assumes fixed
forwarding rules and fixed packet headers, which may cause
it to fail in complex stateful networks. 3) Low expressiveness:
The specifications are written with ad-hoc codes.

To address these issues, many mature formal methods
(summarized in Table VI and further detailed in [38]) are
used to verify network correctness based on formal models
and provide counterexamples [122], [123]. In these solutions,
the terms implementation and specification refer to the actual
network states and the desired network properties and policy
specifications, respectively. In addition, the fault localization
problem is reformulated as a formal verification problem based
on formal models (e.g., finite state machines (FSMs) and
binary decision diagrams (BDDs)), which can then be solved
with mature verification tools (e.g., Z3, Alloy and KLEE).
For example, in FlowChecker [122], the verification problem
is solved through symbolic model checking, in which network
configurations are encoded as BDDs and the desired properties
are written in computational tree logic (CTL). Anteater [123]
treats configuration analysis as a Boolean satisfiability (SAT)
problem, in which the packet header is represented by a
symbolic variable and the network is modeled as a 3-tuple
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TABLE VI
FORMAL METHOD

Technique Definition Implementation Specification
Model checking Automatically check whether a specification holds in all states of an

implementation.
A finite-state transition
graph.

A temporal
logic.

SAT solving Given a propositional formula with Boolean variables (AND, OR and NOT),
determine whether there is any satisfying assignment or whether it is possible
to prove that none exists.

Suitable models for
extracting assignments.

A propositional
formula.

Theorem proving Given an arbitrary theorem, verify the truth of the theorem with formal
proofs.

A formal logic. A formal logic.

Symbolic
execution

Abstract programs to symbolic values and explore all possible feasible
execution paths.

Symbolic values. /

G = (V,E, P ).

In addition to comparisons with network properties, Xu
et al. [124] considered verification based on SDN controller
states. In their approach, configurations are extracted from
both controllers and end hosts, their states in three network
layers (L2, L3 and L4) are modeled as BDDs, and cross-
plane correspondence checking is performed to identify any
differences in the mappings between the controllers and end
hosts in the same layer. This approach offers a more detailed
verification of the states in different network layers, e.g.,
L2 connectivity, L3 reachability, and L4 security groups and
packet filtering.

Real-Time Verification: Static verification is an offline pro-
cess and cannot be used to monitor the correctness of the
current network state in real time. Recently, several real-
time verification solutions have been proposed. The core idea
of real-time verification is to intercept and replicate control
messages by establishing a proxy between controllers and
switches (as described in Section IV-C) to obtain network
update messages at run time and incrementally update the
network model to verify the network configurations.

When implementing real-time verification, the time effi-
ciency of the verification process is key. Several solutions
based on network slicing have been proposed [19], [20], in
which the network model is sliced into packet equivalence
classes (ECs) to allow the verification to be processed in
parallel. Here, an EC is a set of packets that experience the
same forwarding actions. Veriflow [20] utilizes a trie structure
to search for the rules in the ECs that are affected by a new
rule, and it models these affected ECs and their forwarding
states as forwarding graphs. NetPlumber [19] builds on HSA
to incrementally model packet transfer and uses a dependency
graph (plumbing graph) to represent the relationships among
different rules. It also clusters the graph into several subgraph-
based ECs and generates and sends HSA “packets” based on
specific queries into these subgraphs (which are related to
the new rules) to check the validity of policies and invariants
in parallel, thus achieving near-real-time performance similar
to that of Veriflow. Through partial analysis performed by
means of incremental algorithms, these two tools can perform
verification within hundreds of microseconds. While Veri-
flow provides functional APIs for invoking different traversal
strategies to verify various violations of network invariants
depending on users’ queries, NetPlumber provides a formal

language in which to express policy checks and supports more
verification functions (e.g., arbitrary header modifications)
than Veriflow does due to its protocol-agnostic HSA model.

Seeking a more time- and space-efficient approach for net-
work verification, Yang et al. [64] proposed atomic predicates
for specifying packet filters and transformers, which are the
coarsest ECs. The AP verifier [64] precomputes the set of
atomic predicates for all port predicates in the network and
computes separate sets of atomic predicates for forwarding and
ACL predicates (represented by BDDs) in real time. Then, it
generates a reachability tree labeled with the identifiers of the
atomic predicates to search for network property violations.
Since the time requirements can be greatly reduced by com-
puting operations on these identifiers rather than on the packet
header fields, the AP verifier can better achieve real-time
network verification. Yang et al. then considered a problem
observed in several previous real-time verification approaches,
namely, their limited scalability to packet transformations
[19], [20]. To address this problem, they proposed APT [66],
in which the packet header is represented by a stack of
protocol headers. Like the AP verifier, APT also relies on
a transformation to generate atomic predicates represented by
BDDs to verify the desired network properties.

Although these packet-equivalence-based approaches are
efficient for real-time verification, they also raise a problem of
how to efficiently handle operations that involve large numbers
of ECs [125]. To address this issue, Delta-net [125] exploits
the network characteristic that similarities among the forward-
ing behaviors of packets can be identified from parts of the
network rather than its entirety. Instead of slicing the network
model, Delta-net leverages a single edge-labeled graph to
represent the entire network and incrementally transforms that
graph as network updates. It then uses the concept of atoms,
as proposed in [64], [66], and automated precision refinement
on the graph to achieve real-time verification.

In [126], a stepwise-refinement-based verification tool, Co-
coon, was proposed to further improve the speed of con-
figuration verification. In Cocoon, the verification process
is separated into static verification and run-time checks. A
programming language and a verifier for this language are
provided to allow users to specify a high-level view of the
correct network behavior. Cocoon uses a set of run-time-
defined functions (RDFs) to capture run-time configurations
and checks them against static assumptions defined at design
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time to find violations. This separation offloads most of the
real-time check cost to the static verification process, thus
enabling faster verification of configuration correctness than
is possible with NetPlumber and Veriflow.

The real-time verification tools introduced above all collect
DP snapshots from the control channel. However, collecting
snapshots has a potential shortcoming in that, in a large-
scale dynamic network, it is difficult to guarantee consistency
between a collected snapshot and the network state due to the
frequent changes, unsynchronized updates, and update delays
in the network. Libra [68] attempts to handle this issue by
first replaying the network events within a specified period
to reconstruct the current state of the network. Then, for
verification, it uses MapReduce to slice the network (modeled
as a directed graph) into subgraphs according to different
prefixes and analyzes these subgraphs in parallel. Thus, Libra
can handle both snapshot inconsistencies and many forwarding
faults.

Another issue that arises with these real-time verification ap-
proaches, including static verification, is that the network mod-
els are programmed in a general-purpose language (e.g., C).
Such languages may suffer from scalability issues, especially
for stateful or new protocol networks because of the more
complex network states involved. Panda et al. [127] designed a
restricted language for modeling middleboxes and then used an
SMT solver, Z3, to verify pipeline and isolation invariants in
networks. Their approach leverages Veriflow to check the input
topologies and forwarding tables and produces a forwarding
graph, to which the user can add assertions describing the
physical behavior of the network, which are then provided
to Z3 for verification. NOD [65] is an optimized version of
Datalog for expressing specifications and network models; it
was developed by modifying the Z3 Datalog implementation to
provide solutions for all reachability queries with the support
of software-defined elements, e.g., P4 and OpenFlow.

Discussion: The network verification techniques introduced
above are summarized and compared in terms of their network
models and functions in Table VII. These research solutions
can be divided into two classes: those that rely on new
data structures for modeling networks (HSA, NetPlumber,
VeriFlow, AP verifier, APT, Delta-net and Libra) and those
that represent networks using formal models (FlowChecker,
Anteater, Panda and NOD). While the former may be more
consistent with the network characteristics than formal models
that enable real-time verification are, the latter can provide
more flexibility in verification and can support complex net-
works by leveraging expressive modeling languages and ma-
ture verification tools for formalizing network implementations
and property specifications. However, the problem of state-
space explosion in formal verification needs to receive greater
attention with regard to optimization when formal models are
applied for network fault diagnosis. Note that although these
network verification approaches can identify potentially abnor-
mal network states in the DP, they cannot address inconsistent
rule installation issues in the DP since the verification is
performed solely on the basis of the controllers’ views. They
also cannot effectively verify stateful network behaviors since
the snapshots obtained from the control channel are insufficient

to explain these behaviors.
2) Formal Probe Testing: Formal probe testing is a process

that leverages probe testing in combination with formal veri-
fication techniques to provide a dynamic verification solution
for the rule inconsistency issue in SDN networks. Such testing
is commonly based on the assumption that the policies in the
CP are correct. Probe packets are then generated to observe the
actual DP behaviors to validate the consistency between these
two planes. Two problems arise in the implementation of such
formal testing: how to generate probe packets for different
verification purposes or to cover the entire network and how
to capture the probe results with low overhead. By providing
a logical view of the entire network, SDN can facilitate packet
generation. However, faults in the DP (e.g., software bugs, rule
overlap [77], and priority conflicts [70]) also pose challenges
for network inspection. Thus, a key question in formal testing
is how to implement an accurate and efficient forwarding
inspection based on probe results [70].

ATPG [28] leverages the HSA model [27] to model all
network behaviors and precompute all possible test packets
to cover all rules in each switch. Given a set of test hosts pe-
riodically sending and receiving test packets, ATPG formulates
the rule liveness problem as a SAT problem that can reveal
forwarding and congestion issues in the DP. On the one hand,
the use of additional equipment can introduce a scalability
problem. On the other hand, the batch packet generation in
ATPG may result in much poorer timeliness for large-scale
and dynamic networks. To address these issues, Monocle [15]
(an extension of ProboScope [77]) formulates the flow table
logic in the DP as a SAT problem to generate probe packets
and sends them to switches via controllers. Then, it leverages
the catching rules installed in the corresponding switches to
trap these probe packets. Monocle serves as a proxy between
the CP and DP, allowing it to monitor each network event (e.g.,
rule update) and verify each related rule with probe packets in
real time. In addition, in the steady state, Monocle provides
periodic testing of the whole network.

However, the verification provided by the aforementioned
tools may be inaccurate due to a lack of detailed packet
processing information. To overcome this shortcoming, Rule-
Scope [70], [128] leverages a “postcard” [106] (generated
through packet mirroring, as discussed in Section IV-B2) to
obtain more information for accuracy inspection. By means
of a carefully designed SAT solver for packet generation
and dependency-graph-based fault inference algorithms, it can
inspect the network for both rule loss and priority faults. This
approach can yield a high-accuracy analysis of forwarding
behaviors. Unfortunately, the high data collection overhead
incurred for packet mirroring is not a negligible issue.

Another difficulty facing these verification tools is that
catching-rule-based data collection can increase memory re-
source consumption and induce interference in normal net-
works. In addition, the high time cost of the probe generation
process still has not been fully resolved in either RuleScope or
Monocle. VeriDP [73] offers a different solution for verifying
the DP to address these issues. A VeriDP pipeline is added
alongside the OpenFlow pipeline in switches to record packets.
OpenFlow messages are monitored to construct a path table
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TABLE VII
CONFIGURATION VERIFICATION

Tool Short Description Issues Addressed
Network Behavior Model

Packets Network Device(s) Network Expression of
Properties

HSA [27] Static analysis with a
protocol-agnostic structure.

Forwarding failures Points in {0,1}L
space

Space transfer
functions in
L-dimensional space

Network and topology
transfer functions

Ad hoc codes

FlowChecker
[122]

Verification based on
symbolic model checking.

Misconfigurations
and inconsistencies

Packet 4-tuples
with locations

BDDs with several
constraints

/ CTL

Anteater [123] Verification based on SAT
solving.

Forwarding &
transformation
failures

Symbolic
packets

Boolean constraints 3-tuple graph with
devices, links and policies

Ad hoc codes

Xu et al. [124] State consistency verification
for SDN-enabled networks in
OpenStack.

Inconsistent states
between the CP and
DP

/ / Binary matrix for L3
reachability &
BDD-based bitmap for
L4 state

Ad hoc codes

NetPlumber
[19]

Real-time verification based
on HSA.

Forwarding &
transformation
failures

HSA packets HSA functions Dependent graph with
subgraphs

FML

VeriFlow [20] Real-time verification based
on model slicing.

Forwarding failures Variables / A trie structure Functional
APIs

AP verifier
[64]

Real-time verification based
on atoms.

Forwarding failures General model
with multiple
fields

A box with packet
filters

A reachability tree
labeled with integers

CTL

APT [66] Real-time verification based
on atoms and a
protocol-independent packet
model.

Forwarding &
transformation
failures

A stack of
protocols to
model the header

A box with several
transformers

A directed acyclic graph
of boxes (BDD)

Fixed policies

Delta-net [125] Real-time verification with a
single edge-labeled graph.

Forwarding failures Atoms of IP
prefixes

A set of atoms A single edge-labeled
graph

Datalog

Cocoon [126] Combined verification
consisting of static and
real-time checks.

Forwarding failures / / Run-time-defined
functions formulated with
SMT

Cocoon
language

Libra [68] Verification based on
MapReduce.

Forwarding failures / Sliced into subnets
for each prefix

A directed graph with
several subgraphs

Fixed policies

Panda et al.
[127]

Verification based on SMT
solving for dynamic
datapaths.

Pipeline & policy
invariant violations

Variables Model in a
declarative language

Forwarding graph
produced by VeriFlow

Fixed policies

NOD [65] Verification based on Datalog. Forwarding &
transformation
failures

A separate
variable

Predicates Forwarding model based
on Datalog

Datalog

using a BDD, and the consistency between the path table
and the traffic statistics collected from the VeriDP pipeline
is inspected to find any inconsistent network behaviors. To
localize the root causes of faults, VeriDP traverses all possible
paths and infers that the faulty switches lie on the invalid
path(s). VeriDP can achieve a verification speed of 3 µs per
packet. However, the need to modify switches may limit its
widespread adoption.

Currently, many modern networks are stateful. In these net-
works, many complex NFs (e.g., network address translators
(NATs), deep packet inspection (DPI), and load balancers) are
mixed with stateless devices (e.g., switches and routers), and
most of them are outside the visibility of SDN control. Thus,
these formal testing techniques suffer from scalability issues
due to the need to process more complicated data. Recently,
several proposals, such as FlowTest [101] and BUZZ [102],
have been presented in an attempt to solve this problem. In
these solutions, probe packets are generated based on a stateful
network model. FlowTest models the DP functions as state
machines in order to formulate probe packet generation as a
formal problem and performs validation in accordance with the
probe results. BUZZ [102] models the DP on the basis of the
operators’ policies and NF models (using the FSM approach)

and then generates test traffic based on an optimized symbolic
execution to trigger policy-relevant behaviors of the DP model.
By means of the DP model and optimized symbolic execution,
BUZZ can test a stateful network for policy violations with
high efficiency and scalability.

3) Route Tracing: As a complement to inferring forwarding
behaviors based on observed packets, route tracing focuses on
tracing packet trajectories for path inspection and rule verifi-
cation. In route tracing methods, specific tags are embedded in
the headers of target packets traversing each switch to record
path information, which can be used to localize faults related
to a specific link and provide efficient end-to-end monitoring
and verification.

Similar to IP traceroute, SDN traceroute [129] can
provide intuitive visibility of packet traversal for SDN network
maintenance. It assigns each switch a unique ID and several
high-priority rules for forwarding probe packets to a controller,
which then re-injects the probe packets into the DP. In this
way, hop-to-hop packet information can be gathered. With
this tool, operators can find where packet traversal fails and
reveal issues such as rules conflicts, controller bugs, and traffic
latency in the network. Everflow [119] applied a match-and-
mirror strategy to trace individual packets across the network.
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TABLE VIII
PROBE TESTING AND ROUTE TRACING FOR MONITORING NETWORK BEHAVIOR

Reference Description Network failures
Reachability Forwarding

loop
Rule

consistency
Waypoint
routing

Unexpected
packet loss

Incorrect
header

changes

Link
congestion

ATPG [28] An HSA-based probe testing tool.
√ √ √ √ √

×
√

Monocle [15] A network state monitor based on
SAT solving.

√ √ √ √
× ×

√

RuleScope [70],
[128]

A rule inspection tool based on SAT
solving and graph-based analysis.

√ √ √ √
× ×

√

VeriDP [73] A rule consistency verifier based on
traffic statistics.

√ √ √ √ √
×

√

FlowTest [101] A stateful DP testing framework in
which network devices are modeled as
state machines.

√ √
×

√
× ×

√

BUZZ [102] A model-based testing framework for
stateful networks based on symbolic
execution.

√ √
×

√
×

√ √

SDN traceroute
[129]

A traceroute mechanism for SDN
networks implemented by trapping
packets hop by hop.

√ √
×

√
× ×

√

Everflow [119] A match-and-mirror-based packet-level
network telemetry system with various
debugging applications.

√ √
×

√ √
×

√

PathletTracer
[103]

A Layer 2 path tracing tool wherein
the path tracing is implemented by
encoding paths in packets.

√ √ √ √ √ √ √

PathQuery [105] A network path query system with a
declarative query language.

√ √ √ √ √ √ √

REV [72] A rule enforcement verifier to defend
against rule modification attacks.

√ √ √ √
× × ×

Cherrypick [104] A packet trajectory tracing tool
tailored for networks with symmetric
topologies.

√ √ √ √ √
×

√

PathDump [131] A packet trajectory tracing tool for
networks with arbitrary topologies.

√ √ √ √ √
×

√

By configuring all switches with specific rules to trap probe
packets tagged with a “debug” bit at a specific sampling rate
and mirror each matched packet to send to analyzers via the
GRE protocol, packet-level telemetry can be implemented for
large data center networks. In addition, Everflow provides
several debug applications, including a latency profiler, a
packet drop debugger, a loop debugger, and an equal-cost
multipath profiler, in the SDN controller to guide probe packet
generation and identify the root causes of specific network
failures.

However, sending packets to a controller hop by hop may
result in significant overloading of the controller workload
and link bandwidth. Some in-band testing tools (i.e., tools
that encode path information into packets), in which packets
are incrementally embedded with different tags according to
specific rules during their traversal and are sent to a controller
as their destination, have been proposed to solve this problem
[103]–[105]. PathletTracer [103] and PathQuery [105], [130]
model network configurations in the form of state machines
and encode path queries as state transitions implemented under
specific rules, according to which the tags in the packets
are changed during their traversal. By analyzing a departing
tagged packet to decode its traversal path, these tools can
check for consistency issues with high-level policies via state
rollback. A similar approach is also applied in REV [72] to
address rule modification issues related to unexpected external
operations or attacks, but in this case, the tags are updated by
means of a secret key shared with the controller in each switch.

This type of approach requires only a few packet header fields
to carry tags, but it can incur excessive computational costs for
generating trace rules and resource costs for installing these
rules.

In contrast, Cherrypick [104] directly embeds identifiers
into the packet header at each switch and performs link
sampling to reduce unnecessary header space costs. The latter
capability is implemented based on clever use of a well-
structured network topology. This approach can minimize the
number of rules required for path queries but suffers from
a lack of generality due to its strong assumptions, e.g., a
symmetric topology. Thus, the authors of Cherrypick extended
this work to support arbitrary network topologies, resulting
in a tool called PathDump [131], based on the belief that
networks will evolve to support larger packet header spaces
to permit the embedding of more identifiers. By providing
network operators with APIs for expressing their path queries,
these tools can offer many debugging functions for various
network failures based on their analysis of packet trajectories.

For clarity, we compare these route tracing and formal
probe testing solutions in Table VIII since they have similar
diagnosis characteristics.

4) Interactive Network Debugging: Interactive debugging,
as performed with tools such as gdb and mtrace, is a process
that allows software programmers to monitor the execution of
a program, stop it, restart it, and set breakpoints. Unfortunately,
this approach cannot be directly applied to debug traditional
networks since their elements often behave as a black box with
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distributed protocols. Some network troubleshooting tools,
e.g., ping, tcpdump and NetFlow, provide only limited
debugging capabilities. With SDN, the decoupling of the
network architecture opens the door toward the development
of powerful network debuggers.

By means of caching-rule-based traffic tracing, interactive
debugging can be implemented for SDN network maintenance.
Similar to gdb, ndb [106] has been proposed as a network
debugger with two basic debugging functions (breakpoint and
backtrace) for SDN network maintenance. It traces network
flows by mirroring packet information (i.e., generating post-
cards) at each hop. Then, a breakpoint (i.e., a flag or filter
defined in the packet header) is used to catch the target packet,
and its forwarding history can also be reconstructed from the
collected postcards. Based on the detailed packet processing
information, these debugging functions can help network
operators to uncover protocol compliance errors, inconsistent
rules and controller logic bugs. This work was subsequently
extended to develop NetSight [107], which provides APIs for
setting breakpoints and more powerful debugging functions,
including an invariant violation monitor (netwatch), a packet
history logger (netshark), and a network profiler for link
utilization (nprof ).
ndb [106] and NetSight [107] both provide a positive

backtrace function, which infers the root causes of a fault
starting from the observation point (an observed alarm event
or several abnormal messages). However, their troubleshooting
attempts may fail without a proper starting point for backtrace.
To address this shortcoming, Y! [133] utilizes the concepts
of positive provenance and negative provenance to construct
a more complete backtrace for detecting configuration issues.
In Y!, the positive provenance represents the normal backtrace
and the negative provenance is responsible for explaining why
the desired network state does not occur. Y! records network
behaviors, configurations and packet headers with timestamps
and uses this information to construct a provenance graph (i.e.,
a causal connection tree). By replaying the graph, it processes
a backtrace on each possible branch to find the reasons for the
observed faults (e.g., logic inconsistencies, failed assertions or
policy invariants). DiffProv [134] extends this work by adding
a differential provenance, which can explain the differences
between two provenance trees, rather than relying on a single
provenance as in Y!. DiffProv finds similar events with the
correct behaviors to construct a reference provenance tree
by looking back in time at the same system or looking for
a different system with similar operations. It then compares
the reference provenance tree against a buggy provenance
tree based on a branching backtrace approach. Compared
with Y!, DiffProv can be used to find more network issues,
e.g., incorrect rule installations, unexpected rule expiration,
multiple faulty entries, and rule conflicts due to multicontroller
inconsistencies.

5) Data Agent Testing: As described in Section III-A3,
faults in data agents (e.g., in the completeness and correct-
ness of OpenFlow implementations and the compatibility and
interoperability of switches) must be addressed before they are
deployed in actual networks. Designing testing processes for
SDN switches is useful for finding inconsistent implementa-

tions and potential bugs. The main research solutions proposed
for addressing this issue are identified in this section.

OFTest [135] aims to provide a unified testing framework
with hundreds of test cases for testing OpenFlow switches.
Several test hosts are deployed around the switch to be
tested, and these hosts are responsible for generating test
packets to be sent to the switch based on the test cases and
analyzing the results received from the switch. However, the
test cases are manually developed, which makes it difficult to
evaluate OFTest’s coverage of the OpenFlow specifications. In
addition, to test any new feature, it is necessary to update the
set of test cases. OFTest currently supports only OpenFlow
1.0 and 1.1, with a limited ability to support version 1.3.
OFLOPS [76] is another testing framework; it offers functions
for packet generation, capture and timestamping for testing
OF implementations. However, its objective is to identify
the performance characteristics of OpenFlow switches (e.g.,
OpenFlow packet processing actions, rule update rates, flow
monitoring capabilities, and OpenFlow operation interactions)
rather than functional errors.

Several other works leverage formal verification techniques
to find OpenFlow implementation issues [55], [56], [136].
OFTEN [136] is an interactive testing tool that leverages
systematic state-space exploration techniques (i.e., NICE [23])
to generate properties from high-level control logic (i.e., apps)
for validating real switch executions. However, the properties
extracted from a system may often rely on the developers’
knowledge, and it is difficult to guarantee the correctness of
these properties for OF switch testing. SOFT [55] focuses on
issues of compatibility and interoperability between different
switches. It is a white-box testing technique in that it needs
the source codes of the OpenFlow agents in different switches
to extract their symbolic execution models. Combined with
concrete testing inputs, SOFT can find more potential incon-
sistencies between any two OF agents by comparing their
symbolic trees. However, the necessary source codes may not
be easy to obtain. Yao et al. [56] presented a model-based
black-box testing approach for SDN DPs. In their technique,
the forwarding behaviors of the DP as defined in the OpenFlow
specification are modeled as FSMs to generate test packets to
be sent to the switches, and a smaller data graph is extracted
from the model for performing correctness verification based
on formal specifications.

B. Fault Diagnosis for the Control Plane

The SDN CP serves as a network operating system and
holds various types of control logic for network provisioning,
management and maintenance. However, diverse configuration
issues and software faults (as described in Section III-B)
can degrade the reliability of SDN networks. A number of
solutions for diagnosing faults in the CP have been proposed.
We list simple descriptions of these tools and the types of
faults they can localize in Table IX. In this subsection, we
classify these solutions and discuss them as follows.

1) Conflict Verification: As an open network platform, SDN
inevitably faces the issue of race conditions in the CP, which
forces operators to design conflict verification mechanisms.
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TABLE IX
FAULT DIAGNOSIS FOR CONTROL PLANE

Reference Short Description Issues Addressed Proposed Solution
FortNox [89] A security enforcement kernel for rule

conflict verification.
Rule conflicts. Abstract flow rules to be compared with the defined security

policies.
FLOVER [137] SAT-based rule conflict verification. Rule conflicts. Use the Yices SMT solver to verify newly generated rules.
Natarajan et al.
[90]

A flow-table-level rule conflict detection
and resolution mechanism.

Rule conflicts. Provide a conflict search mechanism based on a hash-trie
structure and an ontology-based logic inference system.

[138] A rule conflict verification mechanism
based on first-order logic.

Rule conflicts. Model flow rules using first-order logic.

FLOWGUARD
[140]

A dynamic conflict verification mechanism. Rule conflicts. Use the NetPlumb graph to formulate network rules.

SDNRacer [74],
[141]

A dynamic concurrency analyzer. Concurrency violations in flow tables. Model network operations using the first happens-before model
to find conflicts.

BigBug [142] A dynamic concurrency analyzer. Concurrency violations in flow tables. Slice the network model into ECs and identify the most
representative violation per class by ranking.

Controller
verifier [91]

A verified SDN controller. Policy mistranslation. Use a theorem prover to verify the correctness of program
translations.

OFRewind [83] A record-and-replay-based troubleshooter
for OpenFlow networks.

Abnormal events and policy violations. Record OpenFlow messages and replay the traces in the DP to
localize the root causes of faults.

STS [16] A black-box troubleshooting tool for
automatically identifying a minimal
sequence of inputs responsible for
triggering a given bug in the CP.

Policy violations, faulty components,
inconsistent controller states and coding
mistakes.

Design a simulator for replaying input events and a
delta-debugging-based replay mechanism for pruning input
sequences to generate a minimal causal sequence of inputs
triggering a given bug.

JURY [17] A black-box testing tool for verifying the
action consistency among the SDN
controllers in a cluster.

Faulty components and inconsistent
controller states.

Validate differences in behavior among the controllers in a
cluster by injecting the same input events and comparing the
results with the defined correct properties.

In these mechanisms, operators often design a set of basic
constraints (e.g., security policies, firewall policies, or existing
rule sets) as the properties that newly generated rules need to
satisfy.

Rule conflict verification is often implemented based on
static network security policies, which comprise a set of non-
bypass properties representing the correct behavior of the
network. FortNox [89] extends the NOX OpenFlow controller
with a security policy enforcement kernel that can check for
flow rule conflicts in real time. Based on the set of constraints
defined in the security policy, it uses alias sets to represent
rule information and performs a pairwise comparison between
a new flow rule and each constraint. FLOVER [137] leverages
the Yices SMT solver to check for conflicts between flow rules
and the network security policy. When an OpenFlow controller
needs to update the flow rule set in response to a new rule
request from the DP, FLOVER formalizes the created rule set
with these non-bypass properties as a SAT problem to verify
the correctness of the rule set.

As an alternative to performing verification by means of a
component in the SDN controller, some solutions implement it
through a third-party proxy to reduce the controller workload.
Natarajan et al. [90] addressed the problem whereby existing
virtualization solutions implement network resource isolation
only at the policy level and implemented flow table isolation
in the DP to achieve fine-grained conflict detection and res-
olution. They designed a detection system and deployed it
close to FlowVisor [161] (an OpenFlow network virtualization
technique deployed in between the controller and the switches
as described in Section VII-A1) to intercept flow installation
messages. Based on this system, they proposed two conflict
verification mechanisms. The first mechanism leverages a
hybrid hash-trie structure representing the flow tables to search
for conflicts. The other mechanism infers conflicting flow
entries based on an ontology-based logic inference system.

When a conflicting flow is identified, the detection system will
drop this flow and report the result to FlowVisor. A similar
conflict interception system is applied in [138], but that system
models the network rules using first-order logic to detect rule
conflicts.

Although these solutions can efficiently identify rule con-
flicts, they do not consider the dependencies between rules and
the network state, which may lead to false positives. Wang et
al. [139] modeled OpenFlow rules in the form of a network
topology consisting of the flow paths formed by the NetPlumb
graph [19] and checked for any intersections between the
flow path space and the Deny Authorization Space defined
by the firewall policy. The identified intersections represent
policy conflicts and are regarded as bypass threats to the SDN
firewall. This work was later extended in the development
of FLOWGUARD [140] to provide a tool for comprehensive
dynamic conflict verification. With the support of more header
fields, FLOWGUARD monitors all control messages to check
space intersections to achieve the dynamic detection of firewall
policy violations.

SDNRacer [74], [141] concerns concurrency violations in
controller operations on the flow tables in switches. It lever-
ages the first happens-before (HB) model to formulate the
behaviors of networks, including operations on flow tables
(i.e., the reading, addition, modification and deletion of flow
entries) and the behaviors of network elements (e.g., Open-
Flow switches, controllers, and hosts). A commutativity spec-
ification is defined in SDNRacer, which can be used in com-
bination with the HB model to check whether two operations
commute. However, even short traces can yield an excessive
number of concurrency violations, which poses a challenge for
the concurrency analysis. BigBug [142] addresses this issue
by exploiting the characteristic that many violations originate
from the same cause. It clusters the input set of violations
into ECs and identifies the most representative violation in
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each class using a ranking function. Based on the results of
BigBug, developers can quickly focus on understanding the
root causes of the most representative violations.

Although these conflict verification approaches are efficient
at finding rule conflicts that may lead to network failures, they
are reactive in nature and thus cannot prevent such conflicts.
We will discuss several solutions that can prevent rule/policy
conflicts and endow SDN networks with fault tolerance in
Section VII-A.

2) Translation Verification: Since apps written with com-
mon programming languages are prone to error, many high-
level programming languages have been proposed to sim-
plify the programming of apps. These languages are often
designed for specific domains, and a compiler or parser (e.g.,
NetCore [162]) is needed to translate programs written in
these languages into low-level flow rule commands. To ensure
the correctness of program translation, the first step is to
verify the correctness of these compilers, namely, translation
verification.

Guha et al. [91] investigated the translation verification issue
for the NetCore compiler [162] on the basis of properties
such as controller-switch consistency, the correctness of barrier
messages for message reordering, and the correctness of
translation patterns. They presented a verified SDN controller
based on the Coq proof assistant (an interactive theorem
prover) for the NetCore programming language, which is
a declarative language. In this verified controller, NetCore
programs are first translated into flow tables, which abstract
the behaviors of switches, and are then further translated
into featherweight OpenFlow, which models the OpenFlow
switches, the controller and the network topology in the form
of operational semantics. The verified controller then leverages
the Coq proof assistant to prove the correctness of the program
translation by means of a formal specification and a detailed
SDN operational model. This approach can provide the most
basic guarantee that programs written in high-level languages
can be translated correctly.

3) Software-Based Debugging: SDN controllers are soft-
ware entities that are highly susceptible to software bugs.
Unfortunately, traditional program debugging techniques (e.g.,
breakpoints, assertion, and logging) are insufficient for these
SDN software systems since they are tightly correlated with
complicated network states and are modular and physically
distributed to guarantee their scalability and reliability. To
address this issue, many advanced software-based debugging
tools (e.g., record and replay and delta debugging) have been
proposed for controller software; these tools are built on
traditional debugging solutions but possess more advanced
modifications to improve their feasibility.

OFRewind [83] is a tool that can record and replay network
events to localize the causes of network failures in OpenFlow
networks. It acts as a proxy between the CP and DP, recording
OpenFlow messages and re-injecting the traces into the DP
to identify which events trigger a failure. OFRewind also
provides interfaces for specifying the topology, timeline and
specific traffic to allow operators to implement their desired
debugging queries. OFRewind can help network operators to
find issues in controller software, e.g., configuration issues

and invalid actions. AFRO [85] also implements a similar
record-and-reply mechanism to determine whether there are
missing flow rules in the DP. AFRO records all Packet In
messages in real time and spawns a new controller instance
in an emulated environment to replay the network state by
feeding in Packet In messages. This replay procedure enables
the computation of a minimal set of rule changes between the
emulated and current forwarding states. Finally, these different
rule sets are utilized to reconfigure the failed network; this
process will be further discussed in Section VI.

Scott et al. [16], [143] proposed a delta-debugging-based
troubleshooting tool for invariant violation problems caused
by improper network configurations and software bugs in
controller software, e.g., multicontroller coordination errors,
null pointers, race conditions, memory leakage and corruption.
This tool leverages an HSA checker [19] to find any invariant
violations in the network at run time. When faced with
symptoms of a network problem, it uses delta debugging to
iteratively select and replay subsequences from the collected
network event sequence to reproduce the observed failure
by means of a network simulator, namely, STS, which can
generate random input sequences based on the causal relations
among events from collected event sequences and correctly
replay network behaviors with SDN controllers using these
sequences. The purpose of this tool is to find a minimal
causal sequence (MCS) of the recorded events that can be
used to reproduce the observed violation with the minimal
cost, thereby answering the questions of “what, where, and
when” with regard to a fault in controller software.

4) Testing and Evaluation: The SDN CP plays a crucial
role in an SDN system. The correctness and performance
of the CP are the key factors in ensuring that it can be
used to manage various types of networks of different scales.
Testing controllers to find performance bottlenecks or faulty
functionalities is essential to ensure that the controllers can
satisfy the requirements of actual networks. In this subsection,
we discuss recent research on the testing and evaluation of the
correctness and performance of SDN CPs.

Cbench7 is a benchmarking tool for testing OpenFlow
controllers. It emulates numerous switches that connect to a
controller, generate and send Packet In messages, and watch
for Flow Mods to be pushed down. Cbench is a very useful
tool for evaluating the performance of OpenFlow controllers
in terms of their OpenFlow message throughput and latency.
NOX-MT [145] leverages Cbench to quantify the performance
of NOX. OFCbenchmark [146] is an OpenFlow controller
benchmark that can create a set of virtual switches for
generating OpenFlow messages and can analyze the con-
troller responses to these generated messages. Based on this
tool, the authors also designed a platform-independent testing
framework, FCProbe [148], for analyzing the correctness of
controller behaviors. SDLoad [147] is a workload testing tool
for SDN controllers that can add workloads to evaluate the
correctness and performance of SDN CP components.

Instead of testing a single SDN controller, JURY [17]
addresses consistency issues in a controller cluster and serves

7Cbench - https://github.com/mininet/oflops/tree/master/cbench.
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TABLE X
PROPERTY ANALYSIS FOR APPS

Reference Short Description Goal Proposed Solution
Perešı́ni et al.
[150]

App verification using two model
checkers.

Check the correctness of
properties for the network states.

Apply JPF and SPIN to model OpenFlow apps.

NICE [23] Test OpenFlow apps using a model
checker and symbolic execution.

Find policy violations. Identify network transitions by modeling OpenFlow apps and network
elements and explore all possible transitions via symbolic execution and
model checking to uncover bugs based on the correct properties and the
network topology.

Kuai [163] Find property violations using a model
checker and partial order reduction.

Check for policy flaws and policy
violations and reduce the state
space for verification.

Model control programs and the network topology with a custom language
and leverage partial order reduction and abstraction techniques to implement
finite-state model checking.

Sethi et al. [152] Abstraction-based model checking for
OpenFlow apps.

Verification of property violations
in a large network topology.

Analyze apps via model checking and reduce the sizes of the program model
and network state abstraction to support the processing of an arbitrarily large
number of packets.

Verificare [45] App verification based on a
domain-specific modeling language
(VML).

Check for violations of QoS and
safety properties with powerful
expressions.

Model apps with VML, which provides a predefined set of components, and
verify the app properties with a variety of formal verification tools.

VeriCon [46] App verification using a theorem
prover and SAT solver.

Verify policy flaws and program
implementations in arbitary
network topologies.

Use first-order logic to specify network topologies and desired invariants and
implement app verification using Z3.

Chimp [153] Static differential analysis of the
evolution of controller software.

Verify the correctness of revised
programs.

Compare two versions of a control program to extract their semantic or
behavioral differences using Alloy.

Assertion
language [154]

Incremental verification based on an
assertion language for SDN apps.

Find property violations by
dynamically changing execution
conditions.

Annotate apps with C-style assertions to describe time-varying properties and
verify dynamic properties with an incremental data structure.

OFf [97] A simulation-based debugging and test
environment for app development.

Debug policy flaws and incorrect
implementations in apps.

Build on top of the fs-sdn simulator to trace program executions and network
states and debug apps with various debugging features.

Yao et al. [88] A model-based black-box testing for
SDN apps.

Uncover implementation bugs and
policy flaws in apps.

Use a set of component models to model apps and generate test sequences to
be sent to the DP based on these models to uncover bugs in apps.

SIMON [98] An interactive debugger and monitor
approach for SDN apps.

Find policy flaws and
implementation bugs in apps.

Capture network events (e.g., NBI&SBI messages, traffic and DP events) and
represent abnormal network behaviors along with the related event executions
in a time line at the debugging prompt.

as a black-box testing tool for verifying the action consis-
tency among controllers. It intercepts and replicates external
events (e.g., Packet In messages) and internal events (e.g.,
distributed database operations, state synchronization, and
master elections) between primary and secondary controllers,
and it collects the generated responses from these controllers.
Then, JURY maps all controller responses to the events
and transmits this information to an out-of-band validator to
validate the correctness of the controller actions. JURY can
detect various controller faults, including cluster faults (e.g.,
database locking and incorrect master elections) and incorrect
event processing faults (e.g., Flow Mod drops and incorrect
Flow Mod messages).

C. Fault Diagnosis for Applications

Bugs in software programs are inevitable and can become
more serious when these programs are executed in the presence
of complicated network states. The simple syntax debuggers
used in software engineering can play only a small role in
debugging programs. Ensuring the correctness of the logic for
the underlying networks requires programs to be analyzed in
depth. In this subsection, we discuss how to diagnose faults in
apps. The approaches for app fault diagnosis are summarized
with respect to their goals and proposed solutions in Table X.

1) White-Box Verification: Formal verification techniques
can also be applied to debug SDN apps by analyzing both
the network state and the program logic as extracted from the
source codes of the apps or as defined by the programmers.
In [150], two model checkers (Java Pathfinder and SPIN)
were applied to reveal bugs in OpenFlow apps using code-
based network models, and SPIN was shown to be faster than

Java Pathfinder. However, this work was simple and did not
consider the inherent state-space explosion issue that arises
in model checking since it is often necessary to perform an
exhaustive search of the state space of the graph to determine
whether the specifications hold in all states or whether coun-
terexamples can be provided.

Canini et al. [151] addressed this problem using symbolic
execution. In this work, packet code paths were clustered by
analyzing the source codes of OpenFlow apps via symbolic
execution, and inputs were automatically generated to identify
errors in OpenFlow apps based on the desired correctness
properties. Building on this work, the authors subsequently
proposed NICE [23], which combines model checking and
symbolic execution to reduce the state space; here, model
checking is applied to check for correctness violations in
system state propagation, and symbolic execution is used to
reduce the size of the searched state space. In NICE, each
event handler is treated as a transition, with several inputs for
network events and global variables for program states. NICE
uses a simple variable to represent the header field of a packet
to determine the packet’s path through the handler. NICE
also models OpenFlow switches and simple host services to
generate and forward packets in the program model. Upon
encountering an abnormal network state, NICE will apply
model checking to explore the state space of the entire system
to find the root cause.

Majumdar et al. [163] modeled control programs and the
network topology (i.e., switches, links and hosts) with a
custom programming language, and a model checker built on
this language was used to verify whether the programs satisfied
a given safety property. To reduce the state space explored
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by the model checker, they used partial order reduction and
abstraction techniques to optimize the behaviors of switches,
clients, packets, and controllers. Compared with NICE, this
approach offers model checking with improved scalability and
coverage.

Extracting models from low-level languages is a time-
consuming and error-prone process, and its scalability is often
limited. Many high-level language-based solutions have been
proposed to handle this issue by providing domain-specific
programming languages for modeling [45], [46], [152], [153].
In [152], model checking was applied to verify two SDN
programs (a MAC learning switch and a stateful firewall)
in large-scale networks. Verificare [45] predefines system
components to provide Verificare Modeling Language (VML)
APIs, which enable app developers to model their programs
with VML and then to use various verification tools (such as
SPIN, PRISM, and Alloy) to verify their correctness. VeriCon
[46] was developed to provide a sound tool based on infinite-
state models for verifying apps. By means of a domain-specific
programming language, it converts programs into first-order
formulas that specify constraints on the topology and desired
properties, including topology invariants, safety invariants and
transition invariants. Using a theorem prover and a SAT solver
(Z3), VeriCon can prove whether an invariant is inductive
through the execution of arbitrary events on any admissible
state; otherwise, a readable counterexample will be presented
for the observed error. By this means, the correctness of
apps can be verified on any admissible topology and for any
possible sequence of network events.

Beckett et al. [154] found that network properties (or safety
invariants) may vary dynamically, which can cause the static
verification approaches discussed above to fail. They designed
an assertion language (AL) for apps that can annotate control
programs with C-style assertions about the DP to support
dynamically changing verification conditions. By means of
statements in response to these assertions, AL incrementally
updates the properties as the verification conditions change
and uses VeriFlow [20] to check for bugs in apps.

To provide more debugging functions (e.g., stepping, break-
points, and watch variables) rather than simply verifying apps,
OFf [97] was designed as a debugging and testing environment
for SDN apps that is built on top of the fs-sdn simulator [164].
In contrast to ndb [106] and NetSight [107], OFf traces both
the network and program execution states to identify network
failures. It also includes a language-level debugger for basic
language debugging functions, a component for trace replay
and a verification tool for variation validation.

To fix bugs, update programs or restructure features, net-
work programmers need to evolve their programs; however,
techniques for tasks such as verification and testing may be
invalid for newly added features if the existing properties
or tests have not been updated as the program has evolved.
Nelson et al. [153] focused on this concern and proposed
a verification tool (Chimp) based on differential analysis for
the evolution of control software. Chimp is built on Alloy
(a lightweight formal modeling and verification tool), and its
objective is to find semantic or behavioral differences between
two versions of a control program and help programmers to

transfer trust between two versions. Chimp can also find bugs
in a revised program based on its differential properties using
formal methods. This tool plays a role complementary to that
of the aforementioned SDN app verification tools, and the
issue it addresses deserves greater attention.

2) Black-Box Testing: The white-box approaches discussed
above can enable efficient debugging of programs under devel-
opment. However, they sometimes suffer from poor efficiency
(due to close-source apps) or high time consumption (due to
state-space explosion); in addition, many apps contain multiple
components with various statements that are not easy to
exhaustively explore. Yao et al. [88] proposed a model-based
black-box testing method for SDN apps that does not require
their source codes. In this model, the software behaviors of
an app are represented by a group of parallel component
models (e.g., packet handlers and entry components). Then,
by generating test sequences based on the partial states of
related components, DP sequences are recorded that can then
be used for SDN network simulation traffic to expose both
design flaws and implementation bugs.

SIMON [98] is an interactive debugger and monitor for
OpenFlow apps that allows network operators to probe net-
work behaviors with custom scripts to find both implementa-
tion errors and policy violations in apps. In SIMON, several
monitors are established alongside an SDN system to catch
network events such as northbound API messages, OF mes-
sages, network traffic, and DP events. With SIMON, operators
can query abnormal network behaviors without having inti-
mate knowledge of the controller software, and SIMON can
extract related events and display their execution in a time line
at its debugging prompt.

D. Summary

In this section, we have presented detailed descriptions of
fault diagnosis solutions in the SDN domain for the sake of
classifying and comparing these different solutions. Most solu-
tions consider the problem of fault diagnosis on only one plane
in the SDN stack. While quite powerful, they may also lack
comprehensiveness. Several solutions have been proposed as
systemic fault diagnosis frameworks for SDN networks. Heller
et al. [92] proposed a systemic troubleshooting framework
for SDN that combines several troubleshooting tools working
together. The SDN network is divided into two types of layers:
code layers (apps, NetHypervisor, NetOS, and firmware) and
state layers (policies, logical view, physical view, device states
and hardware). For troubleshooting, binary searches are first
performed to reduce the scope of the problem to one code
layer through cross-layer correspondence checking of the state
layers; then, the fault is diagnosed in the identified code
layer with existing tools. To provide more flexible diagnosis
functions, Pelle et al. [155] defined a lightweight framework
that combines existing network and software troubleshooting
tools for specific troubleshooting configurations. These tools
are combined in the form of troubleshooting graphs, which
represent practical troubleshooting patterns. EPOXIDE [156]
was developed as an extension of this work to provide support
for the ad hoc creation of tailor-made testing methods from
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Fig. 3. State rollback in SDN. In the record stage, the controller states and
switch states are collected and stored as snapshots in the database. When one
component fails, the controller and switch states will be recovered from a
previous correct snapshot.

predefined building blocks. These tools represent a prelimi-
nary exploration of the development of systematic SDN fault
diagnosis systems, and they deserve greater attention.

VI. FAULT RECOVERY AND REPAIR

As described in Section III, there are a number of different
faults that can cause a network to fail to provide a desired
level of service. While fault diagnosis techniques are the most
critical techniques for network maintenance, developing tech-
niques to support recovery from error states is also important
for improving network reliability and availability. We discuss
fault recovery in SDN networks from two perspectives: state
rollback (Section VI-A) and configuration fault repair (Section
VI-B).

A. State Rollback

State rollback is a typical recovery approach that is widely
used in distributed systems. As shown in Fig. 3, the main
concept behind rollback is to periodically record the state of
the system and store it as a snapshot with a timestamp in data
storage or elsewhere. When a failure occurs, a previous correct
snapshot will be chosen to which to roll the current faulty
system back. The rollback process is similar to the record-
and-replay mechanism for fault diagnosis discussed in Section
V-B3, but here, the purpose of the replay is the recovery of a
faulty system. This method can mitigate the impact of faults,
especially for those faults that are difficult to repair [85], [165],
[166].

NetRevert [165] is a checkpointing and rollback framework
for SDN fault recovery. It provides a distributed approach to
collecting system states in which each device (controllers and
hardware/software switches) is responsible for checkpointing
its own state independently. Each state change in a switch
is tagged with a transaction identifier (ID) defined by the
controller and stored as a snapshot ID in that switch. The
controller is responsible for collecting all snapshots from the
switches and selecting a set of network-wide consistent states
to roll the whole system back to a globally consistent state
at the time of recovery. Although the distributed approach to
checkpointing can enable memory load balancing and high
scalability for snapshot storage, it may also face issues of
data synchronization and high computational overheads in
highly dynamic networks. Sasaki et al. [166] also leveraged

the rollback mechanism to revert compromised processes in
network components (e.g., switches, controllers, channels, and
the hypervisor) to pristine states. However, the primary goal
of that work was to minimize the impact of an attack on the
system as a whole.

In addition to recovering the CP and DP, LegoSDN [31]
leverages rollback to address the recovery problem for crashed
SDN apps. To mitigate the impact of faulty apps, LegoSDN
relies on a fault-tolerant controller framework, in which each
app or the controller is running separately in a sandbox. Thus,
it can limit the cost of component recovery without influencing
other apps or the controller. LegoSDN continuously records
input events and their corresponding output messages from
SDN apps as the snapshots or checkpoints that are used to
ensure the consistency among different apps and the controller.
When an app has crashed while processing some events,
LegoSDN rolls back the changes made on the CP and DP
by the crashing app and restores the app. Before allowing the
crashed app to re-access the controller, LegoSDN leverages
an event transformer to replay predefined events (different
but equivalent to the event triggering the crash) to find an
event with which the app can successfully realize its function.
LegoSDN enables recovery from two types of faults: fail-stops
due to invalid memory accesses or erroneous expressions and
invariant violations.

B. Faulty Configuration Repair

Although rolling abnormal networks back to a previous
correct state has been widely adopted for network recovery,
it is often a time-consuming process and can incur high
resource overheads for storing snapshots. Benefiting from the
programmability of SDN, faulty configuration repair is also
an efficient approach for recovering from abnormal network
states. In this approach, suitable rule sets (i.e., repairs) are
sought to reconfigure the affected switches. Traditionally,
misconfiguration issues must be manually fixed by network
administers, which is a tedious and error-prone process. The
innovation of SDN provides opportunities to implement auto-
mated fault repair. The following discussion focuses on several
proposed repair approaches for misconfiguration issues.

Incorrect forwarding rules are the major causes of abnormal
network states (e.g., forwarding loops and blackholes) in
OpenFlow networks. To address this problem, one simple ap-
proach is to delete the problematic forwarding rules. However,
since a controller is typically responsible for several apps, each
with its own policies, whose rules may potentially overlap with
each other, deleting rules for the individual logic of one app is
inefficient and may induce additional configuration issues. By
separating the failure recovery mechanism from app-specific
functionality, a run-time system for automatic failure recovery
called AFRO [85] has been proposed. AFRO consists of three
phases: record, replay and reconfiguration. In the record phase,
AFRO keeps track of all Packet In messages. When a failure
is detected, AFRO first spawns a new controller instance in an
emulated environment to replay the network state by feeding
it the recorded messages. The replay results can be used to
compute a minimal set of rule changes between the current
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TABLE XI
RELATED WORK ON FAULT RECOVERY AND REPAIR

Type Reference Goal Proposed Solution

Rollback

NetRevert [165] Recover an SDN system from failures,
software bugs, or misconfigurations.

Set checkpoints in both switches and controllers to construct network-wide snapshots and roll
the SDN system back to a pristine state when a failure occurs.

Sasaki et al. [166] Recover compromised components. Design a secure SDN architecture that can revert the compromised processes in failed network
components via rollback.

LegoSDN [31] Make SDN controllers tolerant to app
failures (e.g., fail-stops and invariant
violations).

Set checkpoints in apps to capture their transactions using OF messages as snapshots, roll back
changes (made by the crashing app), and continuously transform events with a replay
technique to find a safe sequence of events that will not cause the app to crash.

Repair

AFRO [85] Automatically recover a network with a
different set of rules.

Log OpenFlow messages, replay these messages in an emulated environment to find the rule
inconsistencies between the emulated and actual forwarding states, and modify and recover the
switches based on with the rule set.

Marham [86] Fix buggy configurations. Provide an optimized SMT solver for finding a repaired set of network configurations with the
objective of minimizing the number of switches that need to be modified.

Wu et al. [87], [99] Automatically generate repairs for fixing
bugs in control programs.

Use the negative provenance to find the root causes of faults and infer possible suitable repairs
and then test these repairs based on historical network information to deduce the smallest and
plausible list of fixes with the minimal effect on the network.

NEAt [100] Automatically repair policy violations in
real time.

Leverage Veriflow to verify rule updates and search for the minimum number of changes to
the violating ECs forwarding graph via a clustering algorithm.

and emulated forwarding states. By installing this rule set,
AFRO can recover the network from its abnormal state.

For improved efficiency in repair generation, formal verifi-
cation techniques can also be used to recover from network
misconfigurations [86], [100]. In contrast to the configuration
verification problem discussed in Section V, the network repair
problem is as follows: given a set of network configurations
(forwarding rules) that violate an invariant, a repaired set of
configurations is sought such that the repair is optimal with
respect to a given objective (e.g., a minimal scope of repair).
Hossein et al. [86] formulated the repair problem for SDN
networks as a verification problem and solved this problem by
designing an optimized SMT solver in which faulty network
configurations are translated into a set of Horn clauses for
checking the violated invariant. NEAt is a network repair
solution that can automatically diagnose and repair violations
in real time. It leverages Veriflow [20] to find violations. When
a violation occurs, NEAt slices the network configuration into
a set of ECs and computes the minimum number of changes
necessary to repair the violating EC’s forwarding graph.

In SDN networks, the root cause of a network miscon-
figuration is often a policy flaw in SDN apps. Although
the above solutions can perform automated network repair
generation, they are inefficient since they simply repair the
faulty configurations in the DP. They cannot repair the bugs
in the SDN apps that are responsible for these network faults,
which will consequently arise again in the future. To address
this issue, Wu et al. [87], [99] designed a tool that can
produce a list of suggested program patches (repairs) for
fixing identified faults in SDN apps. They had leveraged data
provenance backtracing in their previous studies [132], [133],
as discussed in Section V-A4, and they extended this work to
model both control programs (written in NDlog, a declarative
language) and data, based on a concept they called the meta
provenance. By applying backtracing to the meta provenance
graph, one can find which node (representing a network event,
i.e., a rule and its related operations) in the graph induces
a given fault and changes the node state in order to infer
candidate repairs for the fault. To further reduce the side
effects of a candidate repair, their tool backtests each candidate
via replay using historical data from the network to narrow the

set of suitable repairs suggested for fixing bugs in SDN apps.

C. Summary

The aforementioned recovery and repair solutions are sum-
marized in Table XI. They represent preliminary attempts
to endow networks with self-healing functions by leveraging
the benefits of SDN, such as centralized management and
network programmability. Fault recovery and repair constitute
an indispensable part of fault management for guaranteeing
SDN network reliability, but further research efforts are still
required to improve the current fault recovery and repair
capabilities in SDN.

VII. FAULT TOLERANCE

Fault diagnosis and recovery techniques have been identi-
fied above. By contrast, this section discusses fault tolerance
techniques, which aim to reduce or avoid the effects of faults
on SDN networks. Conflict resolution is addressed in Section
VII-A, fault tolerance for traffic is considered in Section VII-B,
and infrastructure planning is reviewed in Section VII-C.

A. Conflict Resolution

This section focuses on how to resolve policy conflicts over
flow rules or high-level network resources among different
apps in SDN networks. We categorize these solutions into
three types: (1) operation isolation (Section VII-A1), in which
virtualization techniques are leveraged to isolate each tenant’s
operations; (2) policy composition (Section VII-A2), which
aims to combine multiple independent policies into a large pol-
icy; and (3) module coordination (Section VII-A3), in which
a coordinator is deployed to reconcile resource competition
among different SDN apps.

1) Operation Isolation: Networks often support multi-
tenancy scenarios, in which multiple tenants operate on shared
network resources. To support this scenario, network virtu-
alization promises to be an effective method of resolving
conflicts among different tenants while ensuring the correct-
ness of each tenant’s operations on the network. As shown
in Fig. 4, network virtualization can provide two main func-
tions, namely, abstraction and isolation. Whereas abstraction
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Fig. 4. Two types of network virtualization in SDN. Whereas abstraction attempts to abstract the details of the underlying network to allow tenants to operate
on a virtual network, isolation attempts to isolate tenants’ operations in both the CP and DP to avoid operation conflicts.

attempts to abstract the details of the underlying network to
allow tenants to operate on an abstraction layer, isolation
attempts to isolate tenants’ operations in both the CP and
DP to avoid operation conflicts. From low-level virtualization
mechanisms (e.g., VxLAN, NvGRE, and STT) to high-level
hypervisors acting on the SDN CP, a number of network
virtualization techniques have been developed. In this subsec-
tion, we discuss these virtualization-based operation isolation
techniques in terms of how they can be used to prevent policy
conflicts to support multi-tenancy scenarios for SDN. Note that
here, we simply select a few typical network virtualization
techniques to illustrate how they support fault tolerance; a
more detailed discussion of network virtualization can be
found in a previous survey paper [167].

FlowVisor [161] was the first network virtualization tech-
nique proposed for OpenFlow networks. FlowVisor divides a
physical network into a set of virtual networks, each being
called a slice. To isolate each slice, FlowVisor acts as a net-
work virtualization layer (more commonly called a hypervisor)
interposed between the CP and DP to provide control isolation
among network resources (e.g., link bandwidth, topology and
switch CPUs), flow tables and OpenFlow control channels
to control the access of different tenants’ controllers to the
switches. Slicing provides isolation to allow multiple poten-
tially competing logical networks to share the same network
resources, although rule-level conflicts on the DP are still
not effectively resolved due to poor rule conflict detection,
as discussed in Section V-B1.

Koponen et al. [26] implemented a network hypervisor
(NVP) with the goal of serving a complementary role when
applied together with mature computing hypervisors in modern
multi-tenant data centers. Similar to computing hypervisors, it
provides abstractions of the network resources using logical
data paths in an overlay network implemented with Open-
vSwitch (OVS) to allow for the creation, configuration and
management of independent overlay networks for multiple
tenants. The logical data paths have the same configuration
models as the physical data paths and can be automatically
installed into associated OVSs and connected to the physical
network through network tunnels by NVP. By means of such
an overlay network, packet forwarding can be implemented
in the logical network without any changes to the physical

network among the servers, which simply needs to ensure the
connectivity among servers.

However, the two virtualization tools discussed above re-
quire the interposition of a hypervisor between the controller
and the switches, which may introduce latency and errors.
Splendid isolation [168] implements a language-level virtu-
alization whereby network slices are directly specified by a
programming language. Splendid isolation defines a network
slice as consisting of three ingredients: a topology, a map-
ping (the topological relationship between the slice and the
underlying network) and predicates (one for each port of the
edge switches in the slice; these predicates specify access
permissions for packets). Unlike a network hypervisor, Splen-
did isolation imposes a static isolation that allows different
programs to be associated with different slices, which will
then be translated into a global configuration for the whole
network. By providing such a slice abstraction, it can simplify
the implementation of traffic isolation and support multiple
control programs without harmful interference. In addition,
the high verifiability of language abstractions has come to
be recognized as an advantage of slice abstraction because it
allows a specific isolation implementation to be verified with
formal verification tools.

2) Policy Composition: Although virtualization-based iso-
lation techniques can enable tenant isolation based on network
slices, they cannot address conflicts among multiple apps
processing the same traffic, which may arise even in the single-
tenant scenario. In fact, such hypervisors may be invalid in
this situation since they can provide only slice-level isolation.
Policy composition offers a different method of resolving
conflicts, in which policies from different apps with various
purposes are combined into one large policy.

To compose policies, three composition operators have been
developed: parallel (+) [24], sequential (�) [48] and override
(�) [169], [170], as shown in Fig. 5. Here, we use an example
given in [169], [170] to introduce these three composition
operators. This example consists of three modules, namely,
(Monitor, Route and Load Balance), each with different
policies. Through parallel composition, network programmers
can set different policies to be performed simultaneously, as
indicated by the operator “+”; in this case, the overlapping
match fields of the different rules are combined, and their
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Monitor
0. srcip=5.6.7.8 → count

Route
1. dstip=10.0.0.1 → fwd(1)
0. dstip=10.0.0.2 → fwd(2)

Load-balance
1. srcip=0*, dstip=1.2.3.4 → dstip=10.0.0.1
0. srcip=1*, dstip=1.2.3.4 → dstip=10.0.0.2

Parallel Composition: Monitor + Route

4. srcip=5.6.7.8, dstip=10.0.0.1 → count, fwd(1)
3. srcip=5.6.7.8, dstip=10.0.0.2 → count, fwd(2)
2. srcip=5.6.7.8 → count
1. dstip=10.0.0.1 → fwd(1)
0. dstip=10.0.0.2 → fwd(2)

Sequential Composition: Load-balance � Route

1. srcip=0*, dstip=1.2.3.4 → dstip=10.0.0.1, fwd(1)
0. srcip=1*, dstip=1.2.3.4 → dstip=10.0.0.2, fwd(2)

Override Composition: Monitor � Route

2. srcip=5.6.7.8 → count
1. dstip=10.0.0.1 → fwd(1)
0. dstip=10.0.0.2 → fwd(2)

Fig. 5. Parallel, sequential and override composition [48], [169].

actions are concatenated together. The override operator “�”
can also be used to combine conflicting policies, but it
overrides the priority settings of the rules such that one module
is always valid. For example, override composition can be
used to specify that incoming packets should be processed
by Route only when Monitor has failed, as shown in Fig. 5.
As an alternative to the direct removal of overlapping, some
modules can be combined sequentially in an order specified
by the programmer with the sequential operator “�”, which
indicates that incoming packets will be processed by the first
policy (e.g., Load Balance) and that the outputs will be then
processed by the second policy (e.g., Route).

These operators have been widely implemented in various
systems. Frenetic [24] and Pyretic [48] are domain-specific
programming languages that provide a language-level hypervi-
sor (more commonly called a compiler) that translates policies
into OpenFlow rules for programming networks with compo-
sition operators. These composition operators are also applied
in NetKat [171] to combine arbitrary forwarding policies with
access control (ACL). Override composition was proposed in
[169], [170]. STN [169] is a distributed SDN CP that extends
Pyretic to include the override operator and aims to solve
conflicts among concurrent policy updates. RuleTris [170],
[172] has been proposed to eliminate unnecessary priority
updates in the high-level program compiler and supports policy
composition.

In contrast to the Frenetic hypervisor, FlowBricks [173]
and Compositional Hypervisor [174] provide an imperative
interface with parallel and sequential composition options to
allow all controllers (each consisting of individual apps) to
directly process standard OpenFlow messages and generate
policies, which are then compiled into a single policy. This
approach can ensure the scalability of such policies for appli-
cation in various SDN controllers. Compositional Hypervisor
[174] has been extended to CoVisor [175], which offers
performance improvements in terms of rule composition, e.g.,
the introduction of override composition. Both Compositional
Hypervisor and CoVisor can allow any controller to update
the network during run time by implementing the incremental
composition of rules from different controllers based on the
recalculation and rewriting of rule priorities. In addition to
policy composition, additional fault tolerance mechanisms for
controller failures or switch failures are also implemented
in CoVisor [175], whereby the administrator can define a
default app-dependent policy for each controller to execute
corresponding operations when controller failure occurs. To
address switch failures, CoVisor can remove all its rules and

notify the relevant controllers.
The aforementioned policy composition solutions are

efficient; however, they focus only on the composition
of match fields through simple concatenations of actions,
which may result in incorrect behaviors (in the case
of parallel composition) or inefficient compositions (in
the case of sequential composition) [176]. For example,
if the two rules {push_vlan(1), tcpdst=80 →
fwd(1)} and {dstip=10.0.0.1, tcpdst=80
→ fwd(2)} are combined in parallel, the resulting
rule is {push_vlan(1), tcpdst=80 → fwd(1),
dstip=10.0.0.1, tcpdst=80 → fwd(2)}, which
can forward packets with the appropriately modified IP
destination address or an added VLAN header to port 2.
To address this issue, Pan et al. [176] modeled the process
of packet construction as a graph in which the vertices
and edges represent packets and transformations between
packets defined by actions, respectively, and they generated
the correct actions for policy composition by searching for a
Hamiltonian path in this graph.

PGA [49] is an approach that supports the automatic compo-
sition of independent network policies rather than the manual
composition supported by the aforementioned approaches.
PGA uses a graph-based abstraction to allow network pro-
grammers to specify their policies in the form of directed
graphs in which each vertex represents an endpoint group
(EPG) sharing common properties. PGA then decomposes
these EPGs into a set of disjoint EPGs to identify the
overlapping space and automatically recomposes them into
a coherent composed policy (a conflict-free graph) based on
verification with composition constraints. PGA can resolve,
or flag, conflicts/errors based on the defined composition
constraints and report them to users, possibly with suggested
fixes.

3) Module Coordination: For conflict resolution, module
coordination is also an important means of reducing the effect
of policy conflicts. The main idea of this approach is to
coordinate any conflicting operations on flow rules or coarser
network resources (e.g., link bandwidth or access control) and
reassign a different priority to each operation based on specific
mechanisms to resolve conflicts.

PANE [177] attempts to provide participatory networks
with a high-level configuration API whereby SDN apps
can autonomously and dynamically invoke network resources
without worrying about conflicts. It incrementally models the
operations (e.g., requests, queries and hints) of authorized apps
by adding their privileges and related flows into a shared tree.
Thus, PANE can constrain the network policies constructed
from the policy tree. An incoming request is first checked
against the shared tree for admission and is then checked
against the policy tree and the physical capabilities of the
network using hierarchical flow tables to resolve conflicts. In
this checking pass, the request is incorporated into the two
trees, and OpenFlow rules are installed into the network.

Voting mechanisms for resolving conflicts between different
SDN control modules have been proposed in Corybantic [69]
and Athens [178]. In Corybantic, SDN modules first propose
some topology changes (allocations or placements of network
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resources, called proposals), and then, each module evaluates
every current proposal to assign a value to it that reflects
any costs created by unfairness. Then, a global coordinator
chooses the best proposal, and any module affected by the
chosen proposal can materialize it directly. However, this
approach places strict demands on each module’s capability to
evaluate proposals. To overcome this issue, Athens performs
a family of evaluations of proposals instead of the particular
evaluations performed in Corybantic. Upon receiving a new
external request, Athens collects the proposals generated by
each controller module, coordinates the family of voting eval-
uations in each module, and chooses the winning proposal to
be implemented. These approaches are useful but can impose
high overheads and code changes on SDN modules.

Instead of performing explicit coordination, as in the above
two approaches, Statesman [25] achieves a different means
of dynamically resolving conflicts by loosening the coupling
between the modules and the system. It functions as an
arbitration system between the apps and the SDN controllers to
prevent conflicts and invariant violations. Statesman examines
the applicability of state changes proposed by apps. Then,
it merges all proposed changes into one target change by
detecting conflicts among them (considering the dependencies
on the network states) and resolving these conflicts with a last-
writer-wins or priority-based locking mechanism. In addition
to resolving conflicts, Statesman also checks for invariant
violations by comparing the observed and target states against
a network graph. This approach is beneficial for resolving
conflicts at the network resource level. However, when a new
app emerges, it may necessary to modify or even rewrite the
apps or their coordination system.

Volpano et al. [93] addressed the issue of resource conflict
detection and resolution using formal verification techniques.
In their approach, each network control function acting on
network resources is modeled as an FSM. Based on these
FSMs, the intersections between controller functions can be
identified to generate a combination of machines that can be
deployed in the DP without conflicts. This approach enables
the materialization of multiple proposals simultaneously rather
than only the winning proposal, as in Corybantic and Athens,
or of proposals in a specific order, as in Statesman.

4) Summary: Three different conflict resolution approaches
have been discussed in this subsection. We summarize these
techniques in Table XII. Network virtualization techniques can
allow multiple tenants to share the same network infrastructure
while also providing failure isolation among these tenants.
Policy composition operators are commonly implemented in
high-level programming languages for SDN, although most of
them require manual decisions by programmers, which is an
error-prone process. Module coordination is an indispensable
function for SDN controllers that allows multiple apps to
coexist even when there are potential conflicts among them.
These three approaches can be used to resolve conflicts among
tenants or apps to different extents, but all are important for
the evolution of an open SDN ecosystem.

Backup path for data traffic

ask

Controller

Working path for data traffic
Working path for control traffic Backup path for control traffic 

Control Channelanswer

Fig. 6. Failover for the DP. Restoration: When there is a link failure, the
switch will ask the controller how to forward the packet. Protection: Backup
paths are preconfigured in the switch for use in the event of link failure without
the need to consult the controller.

B. Fault Tolerance for Traffic

To ensure network service continuation, providing fault
tolerance against traffic failures is essential. Network traffic
in SDN-enabled networks involves both data traffic in the DP
and control traffic between the CP and DP. The former is a
basic network service for end points, and the latter is used
to ensure normal network management. In this subsection,
fault tolerance for network traffic is introduced from two
perspectives: fault tolerance for data traffic (Section VII-B1)
and for control traffic (Section VII-B2).

1) Fault Tolerance for Data Traffic: Link failures are the
main reason for an unavailable DP. To address this issue,
the failover mechanism, which is the process of choosing
other paths on which to continue forwarding network traffic
when a link failure occurs, has been developed. Tradition-
ally, the failover mechanism is implemented by providing
redundant links for network traffic, which can be achieved
through persistent traffic mirroring and the custom configura-
tion of individual forwarding devices. With the emergence of
SDN/OpenFlow, more flexible failover mechanisms have been
proposed. These mechanisms can be divided into two types,
namely, restoration and protection, as shown in Fig. 6.
Restoration: In SDN networks, when a link failure occurs, the
switch can send a port status message to the SDN controller,
and the controller will recompute a new path for the affected
network flows and move them to this new path by reinstalling
the necessary flow rules in the switch. This process is known as
restoration failover, and it benefits from SDN programmability.
CORONET [179] is a restoration failover technique that uses
the controller to replan the links for affected traffic. There
are four components in CORONET, each responsible for
a specific task: the topology discovery module periodically
collects network topology information with which to construct
a view of the latest global topology; the route planning module
uses Dijkstra’s algorithm to calculate a routing path as a
backup path in the case of link failure; the VLAN switch
configuration module configures the switch port with a VLAN
ID by means of an OpenFlow API to enforce this routing path;
and the traffic assignment module allocates the traffic from the
host to the corresponding routing path.

Since CORONET can calculate new paths from a global
view of the entire network via disjoint path calculation algo-
rithms, it can achieve optimal resource utilization. However,



1553-877X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2018.2868922, IEEE
Communications Surveys & Tutorials

YU et al.: FAULT MANAGEMENT IN SOFTWARE-DEFINED NETWORKING: A SURVEY 29

TABLE XII
CONFLICT RESOLUTION

Type Reference Goal Solution

Operation
isolation

FlowVisor [161] Slice networks to achieve strong isolation to
support nonintrusive multi-tenancy scenarios.

Develop an abstraction layer with virtual flow tables for each slice to allow multiple
logical networks to coexist.

NVP [26] Network virtualization for multi-tenant data
centers.

Develop an abstraction-based end-host network virtualization technique that enables
tenants to deploy individual network services on virtual networks.

Splendid [168] Slice networks at the language level without
harmful interference.

Endow a programming language with the capability of isolating networks through
traffic, physical and control isolation.

Policy
composition

Frenetic [24] Provide see-every-packet abstractions,
composition properties and race-free semantics.

Design a declarative programming language that can disambiguate overlapping rules
by re-assigning their integer priorities (i.e., parallel composition).

Pyretic [48] Combine multiple policies with which to build an
integrated app rather than coordinating or
isolating them.

Extend on Frenetic to support both parallel and sequential composition.

FlowBricks
[173]

Integrate network services from heterogeneous
controllers into the same traffic.

Provide interfaces for composition configurations with parallel and sequential
operators and combine flow tables based on these configurations at run time.

CoVisor [175] Allow multiple controllers to cooperate in
managing the same shared traffic.

Develop a compositional hypervisor with tolerance to controller and switch failures
for the multicontroller scenario, implemented with three composition types

Action
compositon
[176]

Resolve the issue of action concatenation in flow
rule composition.

Formalize the action composition problem as a Hamilton path search problem on a
directed weighted graph for fast composition of action lists without action redundancy.

PGA [49] Implement automatic policy composition. Design a graph-based model for specifying network policies with the capability of
automatic policy composition.

Module
coordination

PANE [177] Decompose the control and visibility of the
network and resolve conflicts among different
apps.

Design a tree-based control mechanism for the invocation of network resources and
provide a configuration API for implementing participatory networks.

Corybantic [69] Coordinate controller modules to achieve
systemwide objectives under global constraints.

Implement a voting-based resource-level coordinator for modular composition and
resolve potential resource conflicts to allow each module to propose its own goal.

Athens [178] Automatically resolve resource conflicts
considering both precision and parity.

Develop a coordinator modified from Corybantic for modular composition, which is
implemented based on a family of voting procedures.

Statesman [25] Provide a network-state management service for
multiapplication scenarios.

Design a priority-based policy arbitration system and resolve resource conflicts
dynamically by loosening the coupling between modules and SDN controllers.

Volpano et al.
[93]

Fine-grained control conflict resolution. Model each network control function as a deterministic finite-state transducer and
leverage standard proof techniques to control conflicts among these transducers.

choosing new paths on the fly may result in unacceptable
recovery times. A survey [180] has shown that due to the
inefficient software and fundamental traits of switch hardware,
the installation of new rules suffers from surprisingly high
latency, e.g., 8 ms per packet on average in the in-bound mode
and 3 ms and 30 ms per rule for insertion and modification,
respectively, in the out-bound mode. When combined with
the delay introduced by the path calculation algorithms, these
latencies may cause network recovery times to increase to
unacceptable levels [181] and result in difficulties in satisfying
the carrier-grade recovery requirement of 50 ms [182]. Fur-
thermore, the computational and memory resources required
by the controller for handling recovery messages may be too
high to permit scalability.

To reduce the time needed for path calculation, Li et al.
[183] implemented a locally optimal approach for migrating
the affected flows. This approach uses the connectivity matrix
table and traffic statistic table in the failed link switch instead
of the statuses of all paths to find a new path. It can find a
locally optimal path and reroute a flow within 36 ms, which
meets the carrier-grade requirement.
Protection: In protection failover, the backup paths are pre-
defined and reserved before a link failure occurs, which can
lead to a faster switching time. To implement this mechanism,
introduced in version 1.1, the OpenFlow specification uses
group tables to permit the predefinition of failure recovery
policies on devices and supports forwarding behaviors that
depend on the local states of switches [184] without the need
for path calculations performed by controllers. The group
table also contains entries consisting of the group identifier,
group type, and counters and an ordered list of action buckets.

Each bucket contains a set of actions that can apply more
complex packet forwarding semantics (e.g., multipath routing,
fast rerouting, and link aggregation) on packets that cannot
be defined by a flow entry alone [40]. Once the group type
has been set to fast failover, the switch forwards packets
only in accordance with the first live action bucket, whose
liveness for the associated parameters (a port or another flow
group) is monitored through end-to-end liveness mechanisms
(e.g., a spanning tree or keepalive mechanism). When the first
bucket is down, the next live bucket is automatically chosen
to continue traffic forwarding without consulting controllers.
Similar to common flow entries, these group entries can also
be installed by the controller, and network programmers can
add their own failure recovery policies to the group tables by
installing group entries. Protection failover possesses the ad-
vantages of lower reaction latencies, faster network restoration
and lower load on the controllers, and it has been shown to
be a more suitable recovery mechanism than restoration for
traffic tolerance [185].

Since the fast failover tables are preplanned and the live-
ness monitoring is limited to local network elements, this
mechanism can react only to local failures and may lead to
the use of nonoptimal backup paths [186], [187]. Sahri et
al. [186] combined the advantages of controller recomputing
and fast failover groups. When a failure occurs, the affected
flows will be forwarded via precomputed backup paths until
a new optimal path based on the current network state has
been recomputed and deployed in the switch by the controller.
A buffer is also implemented in the switch to minimize
the effects of switching traffic among different paths. This
approach can ensure the optimal utilization of network links,
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but it can also lead to high overhead in both controllers and
switches. In contrast, DFRS [187] is a declarative failure
recovery system that allows network operators to choose either
failover protection or failover restoration independently for
different flows. Its core idea is that when a failure occurs,
backup paths will be used for delay-sensitive flows, whereas
delay-tolerant flows will be forwarded to the controller. By
providing a set of high-level interfaces based on Scala DSL,
DFRS can serve as a feasible and low-memory-overhead
recovery system.

Another issue in failover protection is that the number of
false positives for failure detection cannot be reduced since the
liveness mechanisms, e.g., spanning tree or keepalive mecha-
nisms, are managed by code outside of the OpenFlow spec-
ification [40]. The detection times of these protocols remain
slow, and their accuracy is low. To reduce the detection time
and the number of false positives, the Loss of Signal (LOS)
and Bidirectional Forwarding Detection (BFD) protocols [188]
have been implemented to work with OpenFlow fast failover
groups [189], [190]. LOS can detect failures of a signal or
connection due to a number of causes, e.g., a lost connection
to the other end, an improper network configuration, or a bad
cable connected to a network device. The BFD protocol can
detect a link failure by detecting link loss by means of frequent
control-echo sessions between each link. When per-link BFD
or per-port LOS is used as the liveness mechanism, the time
of failure detection for fast failover can be reduced to a sub-50
ms detection window.

The memory resource overhead is also a challenge in
failover protection since it is necessary to deploy additional
rules in switches. However, the memory in switches is often
limited and expensive, especially for TCAM-based switches.
To address this issue, Stephens et al. [191] first proposed a
flow table compression algorithm to decrease the number of
TCAM states consumed by forwarding table entries. However,
this algorithm can only compress table entries with the same
out port and the same modification actions. To improve the
compression ratio, these authors further introduced the concept
of compression-aware routing to reduce the number of flow
table states without impacting resilience or performance. The
authors then combined these techniques with Plinko, a new
forwarding model in which the same action is used for
every packet, to realize fast failover for multiple failures via
forwarding table compression.

To facilitate the flexible deployment of failover policies,
SDN programmability offers the possibility of integrating
these policies into network programs. FatTire [95] is a high-
level declarative programming language that attempts to imple-
ment this idea by allowing programmers to specify the abstrac-
tions of their failover policies. FatTire is a new programming
technique based on regular expressions whereby program-
mers’ failover requirements can be declaratively specified by
specifying legal network paths. The specified policy is then
compiled into low-level OpenFlow group entries. With FatTire,
various failover policies (e.g., the modulo strategy, depth-first
search strategy, and breadth-first search strategy in [192]) can
be implemented more efficiently with high correctness and
robustness. However, for now, this language can only deal with

link-level failures; switch-level fault tolerance remains to be
addressed.

Discussion: Although protection failover with the Open-
Flow fast failover mechanism has been more widely studied
than restoration failover has, the protection approach suffers
from the two main drawbacks of nonoptimal path choice
and resource utilization, especially for large-scale networks.
Combining these two failover approaches is a good choice for
achieving a balance between response time and path choice, as
demonstrated by DFRS [187]. In addition to providing failure
recovery for the DP, OpenFlow fast failover groups can also
be used to implement several troubleshooting functions, e.g.,
snapshot collection, anycast specification, blackhole identifi-
cation, and critical node detection [193].

2) Fault Tolerance for Control Traffic: In addition to fault
tolerance for data traffic, providing fault tolerance mechanisms
for control traffic (i.e., data traffic between controllers and
switches) is crucial since a disconnection between a controller
and switches may disable normal network processing. The
control-switch channel can be implemented in two modes: in-
band and out-band. In in-band control networks, the control
traffic and data traffic are combined and share the same
network resources. In the out-band mode, these two types of
traffic are separated and implemented in different networks.
Although an out-band network has obvious advantages in
terms of reliability and security compared with an in-band
network, building two independent networks is often too ex-
pensive and not feasible for large-scale networks [194]. Thus,
in-band network control has become the preferred solution for
deploying SDN networks. Related to the protection of control
traffic to guarantee the reliability of networks, two issues have
emerged: the protection of the control paths from switches
and the placement of controllers to maximize connection reli-
ability. In this section, we discuss fault tolerance mechanisms
for control traffic failures due to link failures; the problem
of controller placement will be discussed in the next section
VII-C.

Sharma et al. [194], [195] studied two failover mechanisms
(i.e., restoration and protection) for control traffic in in-band
SDN networks. In the restoration mechanism, all switches are
preconfigured with a one-hop restoration path for the working
path for control traffic. The control messages from a switch
can be forwarded only by the neighbor on the working path.
When a failure occurs, the controllers will collect the states
of the other neighbors of the faulty switch and compute a
new path on the restoration path to recover the control traffic
affected by the faulty switch. However, this approach may
result in considerable traffic loss due to the time consumed
for restoration. Protection for control traffic was therefore also
studied, with an approach similar to the protection mechanism
for data traffic that is implemented by means of OpenFlow
group tables. When a failure occurs, the switch can automati-
cally forward control traffic over the backup path indicated by
the group table without consulting the controller. These authors
showed that the protection mechanism for control traffic can
also satisfy the carrier-grade recovery requirement.

The authors of [196], [197] considered the problem of
control traffic tolerance for a scenario with multiple con-
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trollers, rather than a single-controller scenario, as considered
in [194], [195], [198]. In the multiple-controller scenario, the
network is divided into several domains, with each being
controlled mainly by one of the controllers. Hu et al. [196]
implemented a control traffic protection mechanism based on
a combination of local rerouting protection and constrained
reverse forwarding protection. Whereas the local rerouting
protection mechanism attempts to forward control traffic to a
neighboring switch during link failure, the reverse forwarding
protection mechanism attempts to forward control traffic back
to the downstream switch. For each link failure, one of these
two mechanisms is chosen for reconnecting to the nearest
controller, with the objective of recovering control traffic with
the minimum number of hops to the controller.

Obadia et al. [197] focused on control traffic failover for
distributed SDN controllers in different control domains. The
question of how to quickly reconnect the switches in an
invalid domain (called orphan switches) to other controllers
was studied on the basis of two failover mechanisms: greedy
failover and prepartitioning failover. In greedy failover, when
a controller fails, each switch orphaned by that controller will
automatically broadcast specific link layer discovery protocol
(LLDP) messages, which are necessary to modify the switch
software, and the controllers around these orphan switches
will progressively take them over into their own domains.
In contrast, in prepartitioning failover, the failed controller is
responsible for choosing and informing its neighbors of which
switches they should take over. This mechanism does not need
to modify switches and can be fully compliant with OpenFlow;
however, the coordination among controllers in the case of
failure is an error-prone process.

C. Infrastructure Planning

The stability of the infrastructure determines the reliability
of the upper services. Designing the infrastructure to provide
fault tolerance is essential for improving the reliability of
SDN networks. In this section, infrastructure planning is dis-
cussed from two perspectives: component redundancy (Section
VII-C1) and controller placement (Section VII-C2).

1) Component Redundancy: Since the controller is the
brain of an SDN network, guaranteeing its availability and
survivability is essential. Once the controller is down, the
network elements will be unavailable for normal network
requests. An effective solution to this single point of failure is
to use multiple controllers regardless of clustering or backup
[199]. If the primary controller breaks, the slave controllers or
backup controllers can take over the management of the whole
network, which can allow the network to continue operating. In
the multiple-controller scenario, a distributed data store with
a synchronization mechanism is adopted to ensure the state
consistency among these controllers to ensure the reliability
of the whole network [199].

Li et al. [200] used a state machine replication mecha-
nism implemented with the Byzantine fault tolerance (BFT)
mechanism to ensure smooth network functioning. In this
mechanism, each switch is connected to multiple controllers; if
the primary controller fails, the next primary controller will be

selected from among the backup controllers through a proper
election algorithm. They also proposed the Requirement First
Assignment algorithm to solve the controller assignment prob-
lem in fault-tolerant SDN. Similarly, Botelho et al. [32]
employed the Paxos algorithm to implement a data store in
the form of a replicated state machine (RSM), which was
used to integrate fault detection and leader election algorithms
without the need for additional coordination services. In their
architecture, the controllers maintain a local data cache to
reduce the read frequency of the RSM.

Although such a distributed storage system and RSM can
be used to replicate durable states, the consistency between
the controller and switches cannot be ensured. Thus, Ravana
[201], a fault-tolerant CP, attempts not only to replicate the
states of the controllers but also to ensure the consistency of
the external switch states. The RSM in Ravana is extended
to ensure control state replication, and an extension of the
OpenFlow interface is adopted to ensure that each transaction
can be executed in an ordered manner and exactly once across
the switches. The main issue of concern is how to handle
the switch consistency during controller failures based on
maintaining consistent controller states.

2) Controller Placement: Resource redundancy is useful
for enhancing CP survivability; however, it may not be suffi-
cient to provide fault tolerance against both network disruption
and controller overload and can cause additional problems
such as route flapping and prolonged route convergence times.
To address these issues, the problem of finding the optimal
controller placement has received significant attention [202]–
[209]. The controller placement problem has two aspects: the
number and locations of controllers [210]. The first aspect con-
cerns how many controllers need to be deployed to implement
a reliable and resilient network. The second aspect concerns
where these controllers should be deployed, which affects
several important metrics, e.g., the resilience of control traffic,
the quality of network services, and controller performance.
Finding the optimal controller placement for specific metrics
is studied in this subsection.

Several studies have focused on intelligent controller place-
ment according to various metrics to achieve improved design
and performance of SDN networks. Zhang et al. [202] focused
on a metric concerning the invalidation of nodes, links, and
connectivity between controllers and switches. They formu-
lated the placement problem in the SDN network and proposed
a min-cut-based graph partitioning algorithm for controller
placement to maximize the resilience of the network. Hu et al.
[203] considered a metric reflecting the expected percentage of
control path loss. They proposed several controller placement
algorithms to minimize this metric, e.g., random placement, l-
w-greedy placement, and simulated annealing. Guo et al. [204]
leveraged an interdependence graph to analyze the cascading
behavior of a failure, with the steady state used to define a
resilience metric for controller placement, and applied a greedy
algorithm to partition the network into a set of subnetworks
and a selection algorithm to choose the controller position in
each subnetwork.

The above approaches are useful but may have some lim-
itations, as analyzed by [205]: they often use single paths
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TABLE XIII
FAULT TOLERANCE FOR TRAFFIC AND INFRASTRUCTURE

Technique Type Reference Goal Proposed Solution

Traffic
tolerance

Data traffic
tolerance

Kim et al. [179] Recover from link failures in the DP. Propose CORONET, which uses the controller to recompute paths in the
case of link failures.

Li et al. [183] Recover from link failures in a locally optimal
manner.

Migrate the affected flows according to connectivity matrix tables and
traffic statistics.

Sahri et al. [186] Optimize path protection failover. Forward traffic via precomputed backup paths and then reroute traffic
according to controller-recomputed paths.

DFRS [187] Optimize path protection failover. Forward delay-sensitive flows via backup paths and delay-tolerant flows
to the controller.

Sharma et al.
[189]

Recover from link failures within a 50 ms
interval.

Implement a LOS-based restoration mechanism and a BFD-based
protection mechanism to satisfy the 50 ms recovery requirement in
OpenFlow networks.

Van et al. [190] Reduce false positives and time overhead in
failure detection.

Introduce BFD as the liveness mechanism to work together with
OpenFlow group tables.

Stephens et al.
[191]

Improve the utilization of memory resources
for fast failover.

Propose a flow table compression algorithm to decrease the number of
TCAM states consumed by the forwarding table entries.

FatTire [95] Simplify the deployment of failure recovery
policies.

Propose a new programming construction mechanism based on regular
expressions to specify legal forwarding paths.

Borokhovich et
al. [192]

Improve the robustness of DP connectivity
with local fast failover.

Provide three graph algorithms for fast failover implemented with FatTire.

Control traffic
tolerance

Sharma et al.
[194], [195]

Implement failure recovery for in-band control
traffic.

Implement two failover mechanisms (i.e., restoration and protection) for
control traffic.

Hu et al. [196] Achieve control traffic protection with
multiple controllers.

Combine local rerouting protection with constrained reverse forwarding
protection.

Obadia et al.
[197]

Achieve control traffic failover for distributed
SDN controllers.

Develop two failover mechanisms (greedy incorporation and
prepartitioning) to migrate the control of orphan switches to other active
controllers.

Infrastructure
planning

Component
redundancy

Tootoonchian et
al. [199]

Improve the scalability of OpenFlow
controller.

Present a distributed event-based CP with the capability of network
partitioning and component failure recovery.

Li et al. [200] Provide the fault tolerance capability for SDN
network control.

Implement a state machine replication approach based on a Byzantine
mechanism for multiple-controller scenarios.

Smartlight [32] Provide a fault-tolerant SDN controller. Formalize the data store as a replicated state machine (RSM) and allow
the primary controller to maintain a data cache.

Ravana [201] Incorporate switch states into a fault-tolerant
SDN controller.

Extend RSM and OpenFlow interfaces to ensure the consistency of the
controller states and switch states.

Controller
placement

Zhang et al.
[202]

Maximize the resilience of networks. Propose a min-cut-based graph partitioning algorithm considering the
outage of nodes, links, or connections between devices and controllers
for controller placement.

Hu et al. [203] Maximize the reliability of control networks. Provide several placement algorithms to minimize the expected
percentage of control path loss.

Guo et al. [204] Consider a metric of cascading failure
relations for controller placement.

Analyze controller placement using an interdependence graph and two
algorithms for partitioning the network and placing controllers.

Survivor [205] Provide a more realistic controller placement
strategy.

Propose a controller placement strategy that considers path diversity,
capacity and failover mechanisms to improve SDN survivability.

DCPP [206] Decrease the flow setup time and
communication overhead in controller
placement.

Dynamically adjust the number and locations of controllers dynamically
according to the number of current flows.

Ros et al. [207] Achieve five nines reliability of SDN network
control.

Formalize the fault-tolerant controller placement problem and solve it
with a heuristic algorithm to achieve the required reliability.

POCO [208],
[209]

Develop a trade-off controller placement
algorithm.

Implement a Pareto-based optimal controller placement algorithm to
balance all considered objectives.

to model the connections between controllers and switches,
handle traffic load changes on demand, and overlook the
effects of predefined failover mechanisms. To address these
issues, Survivor [205] has been proposed as a controller
placement strategy that considers path diversity, thus achieving
capacity awareness in controller placement and improving the
performance of failover mechanisms.

Bari et al. [206] attempted to implement dynamic controller
provisioning rather than offline planning by minimizing the
metrics of flow setup time and communication overhead. To
this end, they formulated the dynamic controller provisioning
problem (DCPP) as an integer linear program (ILP), which
they solved with two heuristic algorithms to dynamically
adjust the number and locations of controllers according to
the current number of flows. Ros et al. [207] also proposed
a heuristic algorithm for solving the fault-tolerant controller

placement problem, but with the objective of achieving at least
five-nines southbound reliability.

These ILP- and heuristic-based controller placement meth-
ods can address the resilience problem only in terms of specific
metrics and not for all objectives simultaneously. POCO [208]
is a framework for controller placement that considers a trade-
off among several performance and resilience metrics, e.g.,
the latency between nodes and controllers, resilience and
load balancing. A Pareto-based optimal controller placement
approach that can evaluate the entire solution space and
provide a comprehensive placement based on all objectives
is implemented. This solution has been extended with a
heuristic approach (Pareto simulated annealing) to achieve a
trade-off between calculation time and placement accuracy
for supporting large-scale and dynamic WANs, as reported in
[209].
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TABLE XIV
FAULT-MANAGEMENT-RELATED PROJECTS IN SDN

Platform System Project Key Words Focus

SDN

ODL

Cardinal [211] Monitoring-as-a-Service and Network Management
System.

Enable an SDN network to be remotely monitored by
the NMS.

Centinel [212] Streaming Data, Batch Processing and Real-Time
Processing.

Collect and analyze SDN system data.

TSDR [213] Time Series Data and Data Repository. Collect, store and model time-series data.

ONOS

OPEN-TAM [214] Traffic Analysis and Monitoring, Flow Sampling and
Deep Packet Inspection.

Analyze and monitor various types of network traffic.

Fault Management [215] Network Element, Alarm, Fault and Event. Provide ONOS with fault management features.
Composition Mode [216] Flow Rule, Conflict Composition and CoVisor. Implement policy composition features to support

multi-tenancy scenarios.
Network TroubleShooting
Module [217]

Routing Loop, Routing Black Hole and app Conflict. Troubleshoot network faults.

Network Artificial
Intelligence [218]

Machine Learning, Self-Adjustment, Self-Optimization
and Self-Recovery.

Troubleshoot network problems, predict network
traffic and defend against network attacks.

OpenContrail Analytics Node [219] Data Collection, Analytics and Sandesh. Gather traffic information from the DP.

D. Summary

In this section, we have discussed fault tolerance techniques
for SDN from three perspectives: conflict resolution, which
enables multiple tenants with various independent apps to co-
exist on the same network; fault tolerance for network traffic,
which provides fault-tolerance capabilities for both data traffic
and control traffic in SDN-enabled networks; and infrastruc-
ture planning, which focuses on how to design infrastructure
deployments to satisfy reliability and other requirements. The
main conflict resolution approaches are summarized in Table
XII. We further summarize the fault tolerance techniques for
traffic and infrastructure planning in Table XIII to conclude
this section.

VIII. FAULT MANAGEMENT GAP ANALYSIS

While the academic literature indicates that researchers have
comprehensively addressed SDN fault management problems,
the extent of implementation of fault management in existing
SDN-related frameworks remains unknown. Thus, we survey
fault management work in popular SDN-related frameworks
and attempt to analyze the gap in fault management be-
tween academia and industry. We survey open-source SDN
controllers in Section VIII-A. Many SDN controllers have
been developed since the proposal of SDN [6]. Some SDN
controllers, e.g., OpenDaylight (ODL) [220], have evolved
into SDN ecosystems. Numerous projects and new features
are continuously being added in the controller community.
These projects are integrated with core projects to function
as complete SDN controllers. Our survey of SDN controllers
focuses on the fault-management-related projects (summarized
in Table XIV) in SDN controller ecosystems. In addition, we
analyze the gap between solutions developed in an academic
research context and practical deployments for SDN fault
management.

A. Current SDN Controller Platforms

The first SDN controller, NOX [221], was introduced to-
gether with OpenFlow in 2008 [6]. Since then, many SDN
controllers, e.g., POX [222], ONIX [223], Beacon [224],
Floodlight [225], ODL, and ONOS [226], have been devel-
oped in both academia and industry. However, some of these

controllers are no longer being actively maintained. The first
SDN controller, NOX, is no longer under active development
due to its difficulty in scaling, while its Python sibling, POX,
remains in limited use by the research community. The Beacon
controller was popular in 2010 but was replaced by Floodlight
in 2013. Only a few controllers are currently under active
development. We present a brief survey of some important
development communities and commercial SDN controllers
in Table XV. We find that while some companies build their
own proprietary controllers, more than half of them build
controllers based on open-source software, e.g., ODL. Based
on this survey, we select controllers that are still under active
development, including ODL, ONOS and OpenContrail, as
representatives for evaluation.

1) OpenDaylight: ODL is currently the largest open-source
SDN controller. It is a collaborative open-source project
hosted by the Linux Foundation. The members of the ODL
community include Cisco, Ericsson, Intel, Brocade, Google,
Huawei and other Internet and telecommunication companies.
ODL was launched in February 2013 and was announced
as a community-led project in April 2013. Currently, ODL
has grown to be the largest open-source SDN controller.
According to its project list8, there are 65 approved projects,
including 6 kernel projects, 18 protocol and service projects,
33 application projects and 8 support projects. In a survey of
each of these projects, we find three projects related to fault
management: Cardinal [211], TSDR [213] and Centinel [212].

Cardinal [211] was proposed to provide monitoring-as-a-
service in ODL by serving as a monitoring proxy for the
centralized network management system (NMS), as shown in
Fig. 7. In legacy networks, the NMS is a centralized system
that monitors and manages devices throughout the network
via standard protocols, e.g., SNMP. With the advent of SDN,
the need for monitoring has become a whole-network issue,
including controllers, devices, and deployed features. Cardinal
collects statistics from devices and deployed feature statistics
from other services in the controller, and it reports these data
to the NMS above. Currently, Cardinal Boron is only able to
provide monitoring and basic traps.

8OpenDaylight projects - https://wiki.opendaylight.org/view/Project
Proposals.

https://wiki.opendaylight.org/view/Project_Proposals
https://wiki.opendaylight.org/view/Project_Proposals
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TABLE XV
SDN CONTROLLERS

Controller Developer Language Base Open Source? Active?
NOX [221] Nicira C++/Python / Yes No
POX [222] Nicira, Berkeley Python / Yes No
ONIX [223] Nicira, Google, NTT C/Python / No /
Beacon [224] Stanford Java / Yes No
Trema [227] NEC Cucumber/Ruby / Yes Yes
Ryu [228] NTT Python / Yes Yes
Floodlight [225] Big Switch Java Beacon Yes Yes
OpenContrail [229] Juniper C++/Python / Yes Yes
OpenDaylight [230] Cisco, Ericsson, HP, Intel, Brocade . . . Java / Yes Yes
ONOS [226] AT&T, Cisco, Ericsson, Huawei, Google . . . Java Floodlight Yes Yes
OpenIRIS [231] ETRI Java / Yes No
OpenMUL [232] KulCloud C / Yes No
Kandoo [233] U Toronto Go / Yes No

Legacy
Network

SDN-enabled
Network

Network Management
System (NMS)

TL1 REST TMF SNMP
(ODL) SDN
Controller

SNMP NETCONF OpenFlow

Cardinal

• ODL Boron Version
• ODL MIB
• ODL Monitoring
• ODL Traps

• ODL Carbon Version
• Fault Telemetry
• ODL Network Monitoring
• ODL Network Traps
• Rules/Policy Enabled Traps

Fig. 7. OpenDaylight Cardinal. It enables the monitoring of an SDN network
by the NMS.

The Time Series Data Repository (TSDR) [213] is a
distributed time-series data collector that collects data via
standard protocols, e.g., OpenFlow counters, and sinks them
into a distributed database, e.g., HBase, with timestamps.
Currently, TSDR is able to collect controller metrics, NetFlow
statistics, OpenFlow statistics, sFlow statistics, SNMP statis-
tics and SysLog statistics. Although TSDR can be used to
improve the scalability and performance of ODL controllers,
its primary objective is to help to create an intelligent and
“smart” controller.

Centinel [212] is another project in ODL, also focusing on
streaming data. It is a distributed framework for collecting,
aggregating and sinking streaming data. It enables SDN con-
trollers to receive events from multiple streaming sources, e.g.,
SysLog, and execute batch processing or real-time analytics.
Centinel has some overlap with TSDR in the data collection
aspect, as shown in Fig. 8. TSDR and Centinel both provide
network data collection and analytics. The collected data can
be used to monitor the status of the SDN network or for further
potential fault analysis.

2) ONOS: The Open Network Operating System (ONOS)
is a carrier-grade SDN network operating system designed
to provide high availability, performance and scalability. The
members of the ONOS community include AT&T, Cisco,
Ericsson, Google, Huawei, Samsung, and Verizon. In De-
cember 2014, the Open Networking Lab, along with its
industry partners, released the ONOS source code to the
open-source community. In October 2015, ONOS joined the
Linux Foundation as a collaborative project. The first released

OpenDaylight

GrayLog

Centinel
HBase

Batch Processing

Real Time
Processing

SparkMlib

Fig. 8. OpenDaylight Centinel. A distributed, reliable framework for effi-
ciently collecting, aggregating and sinking streaming data across a persistence
database and stream analyzers.

version was Avocet. ONOS is now on its sixth version: Falcon.
There were 30 projects as of November 2016, including core
projects, incubation projects and projects in proposal. Five
of these projects are related to fault management: OPEN-
TAM [214], Fault Management [215], Composition Mode
[216], Network TroubleShooting Module [217] and Network
Artificial Intelligence [218].

OPEN-TAM [214] is a traffic analysis and monitoring
project that enables the analysis and monitoring of various
types of network traffic. Network traffic monitoring is a
function that is crucial for various other functions, including
traffic engineering and fault management. OPEN-TAM has
two subsystems: the Adaptive Flow Sampling Service and
the Open Selective-DPI Service. The Adaptive Flow Sampling
Service can adaptively sample flow statistics to overcome the
problems of performance degradation and low accuracy in
current FlowRule services. The Open Selective-DPI Service
can filter users’ data traffic in the DP and classify it with app-
level granularity using open-source DPI software.

Fault Management [215] is intended to support alarms from
network devices. When a fault or event occurs, a network
device typically sends a notification to network operators via
certain protocols. Fault Management is designed to receive
such notifications or alarms, store them, and make them exter-
nally visible. There are two components in Fault Management:
the Protocol Provider (e.g., SNMP or NETCONF) and the
Fault Management Application (which stores and displays
notifications or alarms).

Composition Mode [216] allows ONOS to run multiple
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Fig. 9. ONOS Composition Mode. It can resolve conflicts among different
apps using three composition operators (as illustrated in Fig. 5).

apps concurrently and automatically resolves flow conflicts. It
supports the parallel, sequential and override composition op-
erators, as described in Section VII-A2. Composition Mode, as
shown in Fig. 9, has 4 components: Policy Interface Definition,
FlowRuleService Implementation, Composition Library and
Switch Rule Installation. Policy Interface Definition interprets
the composition policies defined by network operators and
configures ONOS to apply these policies. FlowRuleService
Implementation maintains flow tables for each switch and
is responsible for the details of composition. Composition
Library is a stateless library that has access to apps, interme-
diate flow tables and policies. Switch Rule Installation installs
OpenFlow rules into physical switches.

Two additional fault-management-related projects, Network
Trouble Shooting Module [217] and Network Artificial In-
telligence [218], have also been proposed in ONOS. They
are in their initial stages. Network Trouble Shooting Module
aims to improve the reliability of SDN, mainly by solving
the problems of routing loops, routing blackholes and app
conflicts, as indicated in the proposal. However, at present,
only two algorithms have been developed: the Routing Loop
Detection Algorithm and the Routing Black Hole Detection
Algorithm. The app conflict problem remains to be addressed.
The Network Artificial Intelligence project in ONOS is similar
to TSDR and Centinel in OpenDaylight and utilizes Apache
Flume and Kafka for streaming data collection and analytics.
However, no detailed information about this project is avail-
able.

3) OpenContrail: OpenContrail is an open-source network
virtualization platform for the cloud that supports secure multi-
tenancy and enables dynamic service chaining in private,
public and hybrid clouds using SDN and NFV techniques.
Juniper acquired this technology in 2012 and began building
on its SDN capabilities. It was first released in September 2013
and is mainly supported by Juniper.

OpenContrail includes the Analytics Node project [219] for
data collection and analytics, as shown in Fig. 10. Analytics
Node uses an XML-based protocol called Sandesh for high-
volume data collection. It collects asynchronous messages
from other nodes, such as logs, events and traces. It can
also collect synchronous messages by sending requests for
the collection of specific operational states from other nodes.
All information is persistently stored in a NoSQL database.
Analytics Node also provides a northbound REST API for
other analytics apps.

RESTAPI
Server

Query
Engine

Rules
Engine Collector

Message Bus NoSQL
DB

Analytics Apps

Analytics Nodes

Analytics Node

Other Nodes

REST

Sandesh

Fig. 10. OpenContrail Analytics Node. An analytical framework for the
OpenContrail system.

B. Gap Analysis

Although a large number of fault management solutions
have been proposed and evaluated in academic studies, we find
that few of them have been applied in practical commercial
deployments, and the projects listed in Table XIV are still in
their initial stages, with limited fault management capabilities.
Most of the projects in Table XIV enable only the monitor-
ing of SDN networks and the collection of statistical data;
some projects, such as Network TroubleShooting Module and
Network Artificial Intelligence in ONOS, cannot be directly
applied. Leveraging the centralized nature of SDN to collect
statistical data for network maintenance is highly feasible
since SDN can simplify data collection by virtue of its global
overview of the network. In addition, the programmability
of SDN allows network operators to design automated fault
diagnosis and repair solutions, which can relieve operators
of the task of having to analyze large amounts of data.
However, as found in our survey, applying such features in
practical network deployments is currently still quite difficult.
In this subsection, we attempt to identify the reasons for this
gap between academic research and practical deployments in
terms of the state of development of SDN fault management
techniques from two perspectives.

1) Issues in Academic Research:
Complexity of the production network environment:

The main issue hindering the practical application of many
solutions developed in an academic research context is that
the experimental environments in which they have been tested
are often small in scale, with a limited amount of equipment,
and most solutions are actually simulated. In addition, many
solutions depend to some extent on certain assumptions,
such as a fixed network topology, a fault-free DP in the
case of control-message-based configuration verification, and
unlimited hardware resources. However, practical operating
environments are diverse and complex since practical networks
often need to support many network services, e.g., streaming
media, IP voice, L2/L3 VPNs, 3GPP mobile backhaul and
core transmission, and cloud services. Some unexpected cases
may exist that cannot be extensively considered when network
vendors are designing fault management mechanisms for their
productions. Therefore, the simple environments and strong
assumptions considered in academic experiments often make
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many solutions difficult to apply in production environments.
Diversity of network devices: Another issue is that many

academic research solutions have been proposed only for
pure SDN networks based on a single protocol. However,
many practical networks need to include legacy or proprietary
devices, which may be beyond the control of SDN. Even
in a pure SDN network, various protocols (e.g., OpenFlow,
BGP and SNMP) may be used simultaneously to manage
the DP. These networks are often heterogeneous and contain
various devices. For example, in many cloud data centers, the
virtual switches for virtual machines are controlled via SDN
technology with OpenFlow and OVSDB, whereas the physical
switches connecting servers still use CLI solutions, which
are configured by SDN controllers or operators. Furthermore,
even in a network based on a single protocol, interoperability
problems arise among different versions of OpenFlow; e.g.,
OpenFlow 1.0 is not fully compatible with OpenFlow 1.3.
The hybrid network paradigm, in which SDN and traditional
network devices are integrated in a single network, is expected
to persist for a very long time. Thus, providing a solution
for interoperability testing and management to address the
diversity of network devices will be necessary for future
network development [55], [234].

2) Issues in Practical Deployments:
Hindrances to new network implementations: The slow

adoption of SDN is one of the factors that is limiting
the development of related fault management techniques in
practical networks. While SDN has seen many successful
deployments, it still suffers from many issues preventing its
widespread adoption [13], e.g., issues of reliability, security,
performance and scalability. For example, when considering
the implementation of SDN networks, network vendors and
users first need to consider the benefits and the necessity of
updating their products [13]. The benefits are the cost savings
of implementing new technologies, and the necessity to update
concerns how and why the existing products are insufficient. In
addition, the process of updating products often suffers from a
long cycle time since a wide variety of updates may be needed
concerning, e.g., compatibility with old devices, the reliability
and security of the new software system, and infrastructure
maintenance. These factors are among the major hindrances
to the adoption of SDN and the development of related fault
management projects.

Disunity of architecture and interfaces: The hierarchical
SDN architecture and the interfaces between different planes
have yet to be effectively unified and standardized [234],
which complicates the development of associated projects,
including fault management. First, with the increasing require-
ments for and sizes of networks, the SDN CP must be scaled
in terms of horizontal expansion and vertical stratification.
This has resulted in various hierarchical CP architectures in
different network domains. For example, while a CP with a
single-layer architecture is used in data centers, a CP with a
multilayer architecture is needed for mobility core networks
[235]. Second, the SDN SBI and NBI have become diver-
sified, and there is also no consensus on the development of
EBIs/WBIs. Therefore, the SDN architecture and its interfaces
will require further study and clarity for standardization and

unification. This will allow rapid development of related
technologies, which can, in turn, promote the development of
SDN itself.

Changes in management patterns: The emergence of
SDN has affected both network architectures and network
management patterns. A single SDN network involves multiple
vendors (e.g., app vendors, controller vendors and device
vendors), and the network management pattern must coor-
dinate the products from all these vendors. However, this is
challenging to achieve [234], especially with regard to network
reliability. Fault management solutions need to address not
only issues of horizontal incompatibility and interoperability
in the same plane (e.g., the interoperability among network
devices, as discussed above) but also issues of vertical (i.e.,
cross-layer) collaboration, such as cross-layer diagnosis, as
addressed in [92]. We believe that designing new techniques to
address the interoperability problems that arise in multivendor
integration is highly necessary for reliability, and we also
suggest that providing an incremental plan for SDN deploy-
ment (such as those considered in [236], [237]) is another
efficient approach for relieving interoperability issues, which
can balance the benefit of replacing legacy devices with the
cost of addressing interoperability issues when integrating
multiple network techniques.

Changes in certifications: The last, but no less important,
source of practical hindrances to fault management is the
changes in network certifications caused by the emergence of
SDN. Since the software-centric nature of SDN can funda-
mentally alter network engineering and management, network
engineers must know not only how to configure networks but
also, and more importantly, how to program them. To deploy
a reliable SDN network, network engineers must become
familiar with more elements (e.g., controllers, apps, program-
ming languages, and new switch architectures), in addition to
command-line interfaces (CLIs), and must acquire more skills
(e.g., troubleshooting, basic software tool debugging and au-
tomation), based on this new understanding of networks. Most
network engineers will require retraining for this purpose. In
addition, current SDN certifications for validating the skills
of engineering professionals remain in an imperfect state, and
only a few organizations, e.g., ONF and Cisco, provide such
certifications. Thus, there is a need for more investment in
training and certifications [234].

C. Summary

We have surveyed fault management projects related to
open-source SDN controllers and presented a gap analysis be-
tween the solutions that have emerged from academic research
and practical deployments. Unfortunately, these projects are in
their initial stages; some have only simple implementations,
and some even lack detailed proposals. The development of
SDN fault management has been slowed by the current state
of adoption of SDN, and this immaturity of fault management
undermines the reliability of SDN, which, in turn, affects
SDN development. We believe that to push SDN techniques
forward, the industry will need to put greater effort into SDN
fault management.
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IX. FUTURE RESEARCH DIRECTIONS

By analyzing and comparing current solutions for SDN fault
management, we have presented a comprehensive study of
SDN reliability issues. However, several issues remain chal-
lenging and will require greater attention in future research.
Thus, we attempt to identify several open challenges and
potential directions for future research in this section.

A. Data Plane Programming

As analyzed in Sections III-A and V-A, most of the thorny
issues regarding fault diagnosis and repair in SDN concern
the DP, and they can have diverse causes, e.g., software bugs,
hardware failures and external interference. Current probe-
based testing solutions [15], [70] for these issues suffer from
a long probe packet generation time, and solutions based on
traffic statistics [73] require the addition of new pipelines in
the switch datapath, which is also an error-prone process. The
emergence of new DP specifications (e.g., P4 and POF) has
inspired device manufacturers to develop new products that
allow network operators to customize the DP and modify its
features at maintenance time as well as at run time. Recently,
much academic research has been conducted on P4-based fault
management [30], [126], [238]–[240], and several commercial
products9 have emerged. Academic experiments show that P4
can optimize fault management for the DP and further improve
SDN reliability, and commercial products also strongly prove
the performance of P4. Thus, we believe that the design
of more powerful programming protocols for the SDN DP,
including network management, reliability, and security, is
a promising future direction for SDN development, and we
additionally believe that these DP programming languages can
further upset the ecological balance of the current networking
world and provide greater opportunities for many white card
manufacturers.

B. Diverse Network Protocols

In current SDN frameworks, OpenFlow interfaces are the
most popular type of interfaces for network devices. However,
as SDN has evolved, many weaknesses of OpenFlow (e.g., its
scalability, security and compatibility) have become amplified
[241], making it difficult for OpenFlow to remain the only
SDN protocol in widespread use. Thus, vendors are using
other protocols, such as NETCONF, OVSDB, MPLS-TP, BGP,
PCEP, ForCES, P4, and POF, to fill the voids in SDN network
management capabilities left by OpenFlow or to directly re-
place it. These protocols are also used in various combinations,
such as OpenFlow and NETCONF or OVSDB, to manage
switches. As this trend has emerged, greater concerns about
SDN reliability have also been exposed. This is because the
existence of multiple protocols in an SDN network makes the
DP more diverse and complex, and more complex programs
also need to be provided in the CP to support multiprotocol
network management. However, existing fault management
solutions are all focused on networks based on only one

9One example is Barefoot Tofino (https://barefootnetworks.com/technology/
#tofino).

protocol, typically OpenFlow. Thus, we believe that greater
research efforts will be needed to address the diversity of
network protocols used in SDN networks.

C. Complex Software Systems

SDN has come to have a broader meaning, i.e., not sim-
ply CP/DP separation but also automation, virtualization and
programmability. Behind this meaning is the need for complex
software systems. In addition to normal network management,
these systems also need to provide many other functions, such
as modular collaboration, distribution, state synchronization,
backup and restoration, and load balancing, to maintain the
whole network. While these complex software systems require
elaborate design, more effort also needs to be focused on
monitoring, testing, evaluating and diagnosing these systems.
However, most existing fault diagnosis solutions [20], [23],
[107], [134] do not consider the complexity of the CP and
assume that the controllers are failure-free. Only works such
as [16], [17], [153] provide solutions for testing and trou-
bleshooting controller software, and we believe that greater
effort is still needed to accelerate the software development
and evolution of SDN controllers.

D. Network Engineer Training

As analyzed in Section VIII-B, network engineers need
retraining to be able to integrate the SDN architecture. This is
especially important for network maintenance. As surveyed
in the preceding sections, many elements are involved in
maintaining an SDN-enabled network, such as newly defined
switches and various software entities, and network engineers
need to know how to monitor and test these elements, log
their states, and detect and localize potential faults throughout
the system. In addition, they need to deploy fault tolerance
mechanisms, including mechanisms for data and control traf-
fic as well as infrastructure planning, on the switches and
controllers. While the declarative programming languages that
have been proposed for this purpose offer effective methods
of simplifying network deployment in terms of both traffic
configuration [24] and fault tolerance policies [95], we believe
that greater effort needs to be focused on helping network
engineers to understand SDN and how to deploy networks;
one example of such work can be found in [242], where
an automatic suggestion mechanism for writing test codes is
proposed, which can be very useful for inexperienced network
engineers.

E. Scalability

As a logically centralized network architecture, SDN faces
scalability issues [243], [244]. These issues arise from several
causes, including communication delays between the CP and
DP [199], limited computational resources in controllers [244],
and inconsistent data transmission rates [244]. To design a
scalable SDN network architecture, in addition to resolving
these issues, providing reliable software systems and stable
connections between the CP and DP is the most important
factor to be considered. Additional challenges related to SDN

https://barefootnetworks.com/technology/#tofino
https://barefootnetworks.com/technology/#tofino
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reliability that concern scalability, such as controller failures,
the distribution and consistency of controller states, and in-
frastructure planning [244], still require further research.

F. Intelligent Network Management

The future of networking lies in network automation, which
is also one of the main premises of SDN. Recently, there has
been a trend of introducing artificial intelligence (AI) and ma-
chine learning (ML) techniques into SDN to take over network
management to achieve network automation [245], [246]. The
logically centralized network control and the global visibility
of the network provided by SDN allow AI/ML techniques
to automatically make and adjust network decisions. Sev-
eral academic research works and engineering projects [213],
[218], [246] have attempted to provide such a combination
of techniques. In [246], a new network paradigm based on a
combination of SDN and AI/ML, called Knowledge-Defined
Networking, was proposed by several universities and enter-
prises, e.g., Broade, HP, Intel, NTT, Cisco, and UC Berkeley.
In this paradigm, a knowledge plane (KP) is established on top
of the SDN architecture and is responsible for analyzing the
network on the basis of the data collected by the management
plane; ML is used to transform these data into knowledge and
to make network decisions based on this knowledge. Various
open-source projects, such as ODL TSDR [213] and Centinel
[212], also provide similar functions of collecting system data
from each SDN element and using ML tools (e.g., Spark) for
automatic network management. As discussed in [245], [246],
the combination of SDN and AI/ML truly has the potential
to enable automated network provisioning and management
and to make networks more reliable and secure. We also
believe that with greater effort, the combination of SDN and
AI/ML will simplify network implementations to meet various
demands and improve network reliability to an acceptable level
for most users.

G. Self-Healing Networks

As discussed in the above section, network automation is a
current trend. In addition to designing intelligent mechanisms
to achieve automated network management, designing self-
healing networks to ensure reliability is another important
direction of research. A self-healing network is a network that
has the ability to perceive incorrect states in its components
and automatically recover itself to a normal state without
human intervention. Implementing a self-healing mechanism
for networks requires a comprehensive fault management solu-
tion, including an online monitoring system, a fault detection
and localization mechanism for finding faults, a fault repair
and recovery mechanism to restore the network, and a fault
tolerance framework to maintain normal operations. SDN has
enabled this innovation for networks, and several preliminary
attempts, such as integrated fault troubleshooting systems [92],
[155], [156], automated fault diagnosis and repair mechanisms
[83], [85], [87], [100], and fault tolerance platforms with
automatic recovery capabilities [31], have been presented in
academic experiments. However, these designs are still in an
initial stage and have many shortcomings, such as reliance on

strong assumptions concerning the network states and software
systems, incomplete repair mechanisms, and high overhead for
recovery.

X. CONCLUSION

Although SDN promises network innovation, its reliability
issues have demanded widespread attention from academia
and industry. We surveyed academic publications on SDN
fault management from the period of 2008-2017 and infor-
mation on projects undertaken in open-source communities.
We found that although the available academic solutions and
projects address most SDN reliability issues, few can provide
a complete solution for SDN fault management, and many
faults encountered in SDN continue to be challenging. To
address these issues, a systematic and comprehensive survey
of fault analysis and an evaluation of existing solutions for and
challenges facing SDN fault management will be necessary to
guide future research. Unfortunately, this literature was still
lacking.

In this paper, we conducted such a survey to present a
deep and comprehensive understanding and analysis of SDN
reliability issues. We started with an introduction of the charac-
teristics of SDN, considering its current state of development,
and provided a two-dimensional taxonomy of SDN fault
management solutions as an overview. We then classified the
types of faults that can occur in the SDN architecture by means
of a deep analysis of their symptoms and root causes. Next, the
core of the survey was presented from four perspectives, i.e.,
system measurement, fault diagnosis, fault recovery and fault
tolerance, along with in-depth discussions and comparisons
of existing solutions. After the discussion of the existing
solutions that have been developed in an academic research
context, a study of open-source fault management projects
concerning SDN controllers was also presented. We found
that many projects are still in their initial stages and will need
greater effort to develop further. We therefore analyzed the gap
of SDN fault management solutions between academia and
industry and uncovered deep differences with corresponding
reasons as suggestions for future work. Finally, we have noted
several research challenges and emerging trends as future
directions for pursuing advancements in SDN. We believe that
these open issues must be addressed before the maturity of
SDN can reach an acceptable level.
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M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett
et al., “Knowledge-Defined Networking,” ACM SIGCOMM Comput.
Commun. Rev., vol. 47, no. 3, 2017.

Yinbo Yu received the B.E. degree in Electronic
Information Engineering from Wuhan University,
Wuhan, China, in 2014. He is currently pursuing
the Ph.D. degree with the School of Electronic
Information, Wuhan University. He is also a visit-
ing Ph.D. student at the Department of Electrical
Engineering and Computer Science at Northwestern
University, Evanston, IL, USA. His research interests
include SDN, NFV, cellular network, and networking
security and measurement.

https://wiki.opendaylight.org/view/Cardinal:Main
https://wiki.opendaylight.org/view/Centinel:Main
https://wiki.opendaylight.org/view/Project_Proposals:Time_Series_Data_Repository
https://wiki.opendaylight.org/view/Project_Proposals:Time_Series_Data_Repository
https://wiki.onosproject.org/display/ONOS/OPEN-TAM%3A+Traffic+Analysis+and+Monitoring
https://wiki.onosproject.org/display/ONOS/OPEN-TAM%3A+Traffic+Analysis+and+Monitoring
https://wiki.onosproject.org/display/ONOS/Fault+Management
https://wiki.onosproject.org/display/ONOS/Composition+Mode
https://wiki.onosproject.org/display/ONOS/Network+TroubleShooting+Module
https://wiki.onosproject.org/display/ONOS/Network+TroubleShooting+Module
https://wiki.onosproject.org/display/ONOS/Network+Artificial+Intelligence
https://wiki.onosproject.org/display/ONOS/Network+Artificial+Intelligence
http://www.opencontrail.org/sandesh-a-sdn-analytics-interface/
http://www.opencontrail.org/sandesh-a-sdn-analytics-interface/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://trema.github.io/trema/
https://trema.github.io/trema/
https://osrg.github.io/ryu/
http://www.opencontrail.org/
http://www.opendaylight.org
http://www.opendaylight.org
http://openiris.etri.re.kr/
http://www.openmul.org/
https://content.cartesian.com/the-future-of-networks-report
http://www.opennetworking.org/wp-content/uploads/2013/05/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf
http://www.opennetworking.org/wp-content/uploads/2013/05/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf


1553-877X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2018.2868922, IEEE
Communications Surveys & Tutorials

44 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. X, NO. X, X QUARTER X

Xing Li received his B.Sc. degree in Software Engi-
neering from Shandong University, Shandong, China
in 2016. He is currently a Ph.D. candidate in College
of Computer Science and Technology, at Zhejiang
University, Zhejiang, China. His research interests
include SDN, NFV, and cyberspace security.

Xue Leng received the B.S. degree in computer
science and technology from Harbin Engineering
University, Harbin, China, in 2015. She is currently
pursuing the Ph.D. degree major in computer science
and technology with Zhejiang University, Hangzhou,
China. Her research interests are SDN, NFV, and 5G
protocol verification. She is a student member of the
IEEE and CCF.

Libin Song received the B.S. degree in automation
from Tsinghua University, Beijing, China, in 2015,
and the M.Sc. degree in computer science from
Northwestern University, Evanston, IL, USA, in
2017. He is currently a Software Engineer at TuSim-
ple, San Diego, CA, USA. His research interests
span on the area of distributed systems, networking
and security, with a current focus on computing
resources orchestration in enterprise data center.

Kai Bu received the B.Sc. and M.Sc. degrees in
computer science from the Nanjing University of
Posts and Telecommunications, Nanjing, China, in
2006 and 2009, respectively, and the Ph.D. degree in
computer science from Hong Kong Polytechnic Uni-
versity, Kowloon, Hong Kong, in 2013. Currently,
he is an Assistant Professor with the College of
Computer Science and Technology, Zhejiang Univer-
sity, Hangzhou, China. His research interests include
networking and security. He is a Member of the
ACM, the IEEE, and CCF. He is a recipient of the

Best Paper Award of IEEE/IFIP EUC 2011 and the Best Paper Nominees of
IEEE ICDCS 2016.

Jianfeng Yang received his Bachelor, Master and
Ph.D. degrees in Information and Communication
Engineering from Wuhan University, China, in 1998,
2002 and 2009, respectively. He is currently an
associate professor of Wuhan University. He worked
as a visiting scholar in Intel Company in 2012 and
Northwestern University from 2015 to 2016. His
research interests are in security and measurement
for networking, edge computing, and high-reliability
real-time wireless communication.

Yan Chen (F’17) received the Ph.D. degree in
computer science from the University of California
at Berkeley, Berkeley, CA, USA, in 2003. He is cur-
rently a Professor with the Department of Electrical
Engineering and Computer Science, Northwestern
University, Evanston, IL, USA. Based on Google
Scholar, his papers have been cited over 10,000
times and his h-index is 49. His research interests in-
clude network security, measurement, and diagnosis
for large-scale networks and distributed systems. He
received the Department of Energy Early CAREER

Award in 2005, the Department of Defense Young Investigator Award in 2007,
and the Best Paper nomination in ACM SIGCOMM 2010.

Liang Zhang received Ph.D. degree in circuit and
system from Southeast University, Nanjing, China,
in 2010. He is currently a leader research engineer
in Huawei Technologies Co. He is leading a big
data analysis team now, focus on the intelligent fault
analysis, network health evaluation, and network
automation.

Kang Cheng received the Ph.D. degree in control
theory and engineering from Southeast University,
Nanjing, China, in 2013. He is currently a senior
research engineer in Huawei Technologies Co. Ltd.
His research interests include network fault diag-
nosis and optimization, optimal control, machine
learning.

Xin Xiao received Ph.D. degree in control and
computer engineering from Politecnico di Torino,
Turin, Italy, in 2016. She is currently a senior
research engineer in Huawei Technologies Co. Ltd.
Her research interests include data mining, network
fault diagnosis and optimization, time series analy-
sis, machine learning.


