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Abstract— Software-defined networking (SDN) promises
unprecedentedly flexible network management but it is
susceptible to forwarding faults. Such faults originate from
data-plane rules with missing faults and priority faults. Yet
existing fault detection ignores priority faults, because they are
not discovered on commercial switches until recently. In this
paper, we present RuleScope, a more comprehensive solution for
inspecting SDN forwarding. RuleScope offers a series of accurate
and efficient algorithms for detecting and troubleshooting rule
faults. They inspect forwarding behavior using customized probe
packets to exercise data-plane rules. The detection algorithm
exposes not only missing faults but also priority faults and
the troubleshooting algorithm uncover actual forwarding states
of data-plane flow tables. Both of them help track real-time
forwarding status and benefit reliable network monitoring.
Furthermore, toward fast inspection of dynamic networks, we
propose incremental algorithms for rapidly evolving network
policies to amortize detection and troubleshooting overhead
without sacrificing accuracy. Experiments with our prototype
on the Ryu SDN controller and Pica8 P-3297 switch show that
the RuleScope achieves accurate fault detection on 320-entry
flow tables with a cost of 1500+ probe packets within 16 s.

Index Terms— Software-defined networking, forwarding fault,
network troubleshooting.

I. INTRODUCTION

RECENT measurement studies expose SDN forwarding’s
vulnerability to various faults [2]–[4]. When restricted

to data-plane rules, such faults behave as missing faults and
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TABLE I

MOTIVATING RULE SET. GIVEN POSSIBLE PRIORITY SWAP, THE
EXISTENCE OF BOTH RULES CANNOT GUARANTEE

CORRECT PROCESSING OF THEIR COMMON

MATCHING PACKETS

priority faults. A missing fault occurs when a rule is not active
on a switch as expected [5]. It is mainly attributed to switch
firmware or hardware glitch [5] or even rule-update message
loss [2]. Current OpenFlow protocol can hardly notice missing
faults because it does not acknowledge a rule update unless an
expensive barrier operator is inserted [2]. Furthermore, a pri-
ority fault occurs when overlapping rules (i.e., rules with com-
mon matching packets) violate designated priority order. When
implemented in ternary content-addressable memory (TCAM)
in physical switches, sophisticated optimization on rule update
latency [6]–[9] can potentially result in subtle priority fault,
which is difficult to observe without exercising the data-
plane behavior. Priority faults have already been observed on
commercial switches [3]. Since SDN requires that a packet
be processed by the highest-priority rule among matching
ones [10], either missing faults or priority faults might lead
to undesirable forwarding behavior. Directly dumping flows
from the data-plane provides less reliable evidence of data-
plane states as it may not reflect the actual and most up-
to-date data-plane behavior. Rudimentary network debugging
tools (e.g., ping, traceroute, SNMP, and tcpdump) do not either
provide convenient ways to discover data-plane faults in a cen-
tralized SDN environment [11]. It is thus important to explore
SDN-specific inspection schemes.

Although missing fault can be revealed with some data-
plane probing tools, we find that priority fault, which is not
discovered until recently [3], can still evade all existing data-
plane inspecting tools. For example, typical such solutions—
ATPG [11], ProboScope [5], and Monocle [12]—focus mainly
on verifying rule existence on switches. We observe that with-
out verifying rule priority order, verifying only rule existence
cannot guarantee forwarding correctness. Table I exemplifies
such concern. It regulates that users from the 10.10.0.0/16
subnet are not served. If a priority fault swaps the priority
order of the two rules, HTTP requests from the 10.10.0.0/16
subnet will be incorrectly allowed and thus breach the access
control policy even if we have verified their existence.

Detecting missing faults alone is already proved NP-hard
[5], [11]. It is especially challenging to provably reveal both
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Fig. 1. RuleScope framework. X: Switch. OVS: Open vSwitch. VM: Virtual
Machine.

missing and priority faults. ATPG, for example, generates a
set of probing packets that exercises each rule at least once.
However, the header space intersection of every rule pair
must be exercised in order to completely reveal the priority
faults. Considering that any of these intersections can be
potentially covered by a third rule with priority fault, extending
ATPG to detect priority fault will introduce prohibitive probing
overhead.

In this paper, we present the RuleScope system for accu-
rately and efficiently inspecting SDN forwarding. Beyond
existing inspection solutions [5], [11], [12], RuleScope detects
not only missing faults but also priority faults. It can also
uncover actual data-plane forwarding states. In line with estab-
lished systems [5], [11], [12], RuleScope inspects forwarding
behavior through probing. As Figure 1 shows, probing func-
tionality relies on the probing core inside the controller. The
probing core injects probe packets to data plane and collects
probing results for forwarding inspection. While the probing
core can leverage packet tracing tools like NetSight [13],
how to generate probe packets and how to process prob-
ing results for accurate and efficient inspection still remain
challenging. RuleScope fulfills this mission by introducing
monitoring applications atop the probing core.

The heart of monitoring applications is the algorithms we
propose for detecting and troubleshooting rule faults. Our
detection algorithm reveals forwarding faults using customized
probe packets to exercise data-plane rules. To test rule r’s
activeness, feasible probe packets should match with r but
not with r’s higher-priority overlapping rules. Meanwhile,
the probe packet should also match with r’s lower-priority
overlapping rules to detect r’s priority fault. Whenever any
such probe packet is not processed by r, the on-switch flow
table encounters a rule fault. For ease of tracking overlapping
rules, we model a flow table using dependency graph, where
each vertex represents a rule and each edge connects a pair of
overlapping rules [14]. We further explore other techniques to
enhance detection efficiency without sacrificing accuracy. For
example, we decompose dependency graph to enable parallel
probe generation, leverage priority-fault probing results to
eliminate missing-fault probing, and minimize the constraints
of probe generation to speed up detection.

Beyond detecting rule faults, we explore also troubleshoot-
ing algorithms to uncover actual flow tables being executed by
data-plane switch. This enables tracking real-time forwarding
status and inferring how switches handle rule updates. But it

is computationally challenging to generate sufficient probe
packets in an offline way as the detection algorithm does.
Our analysis demonstrates its potential exponential complexity
with respect to flow table size. Toward effective troubleshoot-
ing, we first design an adaptive online algorithm. It gener-
ates and injects probe packets one at a time. The probing
result helps calibrate subsequent probe generation such that
we can minimize the number of probe packets. We also
accelerate probe generation through simplifying computational
constraints. To achieve higher efficiency, we further propose a
semi-online troubleshooting algorithm. It adaptively generates
and injects probe packets at a batch level. Albeit costing more
probe packets than the online algorithm does, the semi-online
algorithm promises faster troubleshooting because it mitigates
redundant code re-execution and enables parallel switch-port
utilization.

Forwarding inspection entails heavy complexity in both the
calculation and execution of probing, rendering re-execution
of inspection algorithms over frequently updated rule sets
hard to favor highly dynamic networks in real time [12].
Toward real-time detection and troubleshooting of forwarding
faults for dynamic networks, we further propose incremental
inspection algorithms. Specifically, they incrementally monitor
the forwarding states by only inspecting the changes made
to the forwarding rules. Since the rule updates usually are
typically small compared with the entire rule set, incremental
inspection runs two to three orders of magnitude faster than
the non-incremental counterparts in [1].

In summary, toward a more comprehensive solution
for inspecting SDN forwarding, we make the following
contributions.

• Detect both missing faults and priority faults for accurate
inspection.

• Not only detect rule faults but also troubleshoot them to
uncover actual data-plane flow tables.

• Present various techniques to enhance inspection effi-
ciency without sacrificing accuracy.

• Investigate incremental forwarding inspection toward
monitoring dynamic networks in real time.

• Validate accuracy and efficiency of RuleScope through
theoretical analysis and experiments on a testbed with
the Ryu controller [15] and Pica8 P-3297 switch [16].

The rest of the paper is organized as follows. Section II
defines the forwarding inspection problem and analyzes its
hardness. Section III proposes a series of algorithms for
detecting and troubleshooting rule faults. Section IV proposes
incremental algorithms to speed up data-plane inspection.
Section V and Section VI respectively implement RuleScope
prototype and report evaluation results. Finally, Section VII
concludes the paper.

II. PROBLEM

In this section, we define SDN forwarding faults and the
forwarding inspection problem. We prove its NP-hardness by
reduction from the satisfiability (SAT) problem.

A. Forwarding Basics

SDN enforces network policies through transforming
them to switch-understandable rules. A rule should specify
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a matching field and an action field that respectively regulate
which packets to process and how to process them. The
matching field is compared against packet headers. Since
SDN advocates flow-based forwarding [10], a rule aggregates
multiple traditional exact-match rules using don’t care bits or
wildcards (denoted by ∗) that match with both bit 0 and bit 1.
Thus, a packet can match with more than one rule. To avoid
matching ambiguity, SDN further assigns each rule with a
priority value. When a packet matches with multiple rules,
it follows the one with the highest priority.

Based on the preceding basics, we introduce the following
definitions to facilitate subsequent presentation.

Definition 1: Header space is a union set of all possible
packet headers. Given l-bit packet headers, the header space
is {0, 1}l [17].1

Definition 2: Rule r is an ordered triplet (rP, rM, rA),
where rP, rM, and rA respectively represent priority field,
matching field, and action field.2 Matching field rM corre-
sponds to a point in the {0, 1, ∗}l space and matches with a
subspace of the header space {0, 1}l.

Definition 3: Matching space of rule r is a set rMS of all
packet headers that match with r’s matching field rM. If rM

has w bits of wildcards, we have |rMS| = 2w.
Definition 4: Flow table is a set FT of n rules. That is,

FT = {ri | ri = (rP
i , rM

i , rA
i ), 0 ≤ i ≤ n− 1}.

Given that flow tables undergo various checks before being
pushed to switches [17], [19]–[22], we assume that FT
contains neither duplicate rules nor obscured rules.

B. Forwarding Faults

SDN forwarding correctness, however, is vulnerable to
rule faults on data plane. Possible rule faults manifest as
missing faults and priority faults. Both are observed in recent
measurement studies of commercial SDN switches [2]–[4].

Definition 5: Missing fault happens to a rule if the rule
cannot take effect on any packets in its matching space. More
formally, rule r ∈ FT is missing on a switch if for all packet
p ∈ rMS the switch processes p without following rA.

Missing faults arise from two scenarios. The first is when a
rule is not successfully installed [5]. Current SDN, however,
does not acknowledge a rule update unless an expensive
barrier command is inserted [2]. The controller divides rule
updates into batches and isolates them using barrier com-
mands. A switch executes all updates prior to a barrier
command and sends a barrier reply. The controller takes the
barrier reply as an acknowledgement that all update commands
are executed, hardly noticing missing ones therein if any. The
second scenario for missing faults is when a rule becomes
obscured due to priority faults.

Definition 6: Priority fault happens to a pair of overlap-
ping rules if their priority order is swapped. More formally,
two overlapping rules ri and rj (i.e., rMS

i ∩ rMS
j �= ∅) with

rP
i > rP

j encounter a priority fault on a switch if for all
packets p ∈ rMS

i ∩ rMS
j the switch processes p following rA

j .

1We use terms “packet” and “packet header” interchangeably.
2We omit rule fields that do not affect forwarding for simplicity [18].

A recent measurement study reveals priority faults on com-
mercial SDN switches [3]. For example, HP 5406zl trims
priorities before installing rules to hardware and treats rules
installed later as higher-priority ones. According to the test
on HP 5406zl with two rules [3], the one installed later
always dominates packets that match with both rules. If the
installation order does not strictly conform to the reverse
priority order, it leads to priority faults and therefore incorrect
forwarding.

C. Forwarding Inspection Problem

The forwarding inspection problem is to reveal inconsis-
tency between flow table FTctr issued by the controller and
flow table FTsw implemented on the switch. We tackle it
in two ways, fault detection and fault troubleshooting. First,
fault detection aims to detect whether FTsw raises rule faults.
Second, fault troubleshooting aims to reproduce FTsw after
a fault is detected. Solving such problems needs to exercise
rules in FTsw using probe packets [5]. If a probe packet for
rule r ∈ FTctr does not follow r’s action on the switch, r is
faulty. RuleScope strives for accurate forwarding inspection
with limited probing overhead.

Before detailing RuleScope design, we analyze the
hardness of the forwarding inspection problem. Inspired
by ProboScope [5], we first prove the NP-hardness of
probe packet generation via reduction from the SAT
problem in Theorem 1. We then demonstrate priority-fault
troubleshooting’s exponential complexity in terms of the
number of probe packets in Theorem 2.

Theorem 1: Generating probe packets to detect missing
faults and priority faults is an NP-complete problem.

Proof: Missing Fault: We first prove the NP-completeness
of missing-fault probe packet generation.

1) Missing-fault probing is in NP. To detect missing fault of
ri ∈ FTctr, a probe packet p should match with ri but not with
higher-priority rules than ri. Otherwise, p will be processed
by another present rule ri′ with higher priority and yield no
proof of ri’s existence. Given l-bit matching field, we represent
ri’s matching field as rM

i = (xi0, . . . , xib, . . . , xi(l−1)), where
xib ∈ {0, 1, ∗} and 0 ≤ b ≤ l−1. Let (p0, . . . pb, pl−1) (where
pb ∈ {0, 1}) represent the corresponding l bits in probe packet
p’s packet header. Then p matching with ri is equivalent to
the following conjunction being satisfied.

ri.Match =
∧

0≤b≤l−1

S(xib, pb), (1)

where

S(xib, pb) =

⎧
⎪⎨

⎪⎩

True, if xib = pb;
False, if xib �= pb;
True, if xib = ∗.

Furthermore, p not matching with ri is equivalent to the
following disjunction being satisfied.

ri.¬Match = ¬ri.Match =
∨

0≤b≤l−1

¬S(xib, pb). (2)
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Based on Equation 1 and Equation 2, we can derive that if
probe packet p for detecting missing fault of rule ri exists,
the following equation should be satisfied.

ri.Match ∧ (
∧

∀rj∈FT ′
sw

rj .¬Match)

=
∧

0≤b≤l−1

S(xib, pb),∧(
∧

∀rj∈FT ′
sw

(
∨

0≤b≤l−1

¬S(xjb, pb), ),

(3)

where FT ′
sw = {rj | rj ∈ FTsw and rP

j > rP
i }. Given a

packet p, verifying whether it satisfies Equation 3 is equivalent
to verifying whether given truth assignments make a CNF true.
Such verification can be efficiently done in polynomial time.
Therefore, missing-fault probe packet generation is in NP.

2) An SAT problem is reducible to a missing-fault probe
packet generation problem in polynomial time. Consider an
SAT instance with s CNF clauses. Each clause comprises some
or all of elements in {xb | 0 ≤ b ≤ l−1}. Formally speaking,
the SAT instance I can be modelled as the following.

I =
∧

0≤i≤s−1

(
∨

0≤b≤l−1

Ci(xb)),

where Ci(xb) denotes how an element xb contributes to the
ith clause as follows.

Ci(xb) =

⎧
⎪⎨

⎪⎩

xb, if xb is in the ith clause;
¬xb, if ¬xb is in the ith clause;
False, if xb is NOT in the ith clause.

We now use the SAT instance I to construct a probe packet
generation instance. Based on S(xib) and Ci(xb), we observe
that the ith clause can be mapped to a rule rj as follows.

rj .xjb =

⎧
⎪⎨

⎪⎩

0, if Ci(xb) = xb;
1, if Ci(xb) = ¬xb;
∗, if Ci(xb) = False.

Considering rules mapped from s clauses in I as rules
rj ∈ FT ′

sw in Equation 3, we reduce the SAT instance I to
missing-fault probe packet generation as follows. Specifically,
it is to generate probe packets for rule ri containing l wildcards
given the above mapped rules rj as constraints. Since the
newly introduced all-wildcard rule ri contributes only true-
value clauses to Equation 3, it does not affect the truth
assignment space of rj .xjb in the mapped rules and therefore
of xb in the original clauses. Now it is straightforward to show
that I is satisfied if and only if the corresponding probe packet
generation problem is satisfied. Since the above construction
takes polynomial time and probe packet generation is in NP,
missing-fault probe packet generation is NP-complete.

Priority fault: We now prove the NP-completeness of
priority-fault probe packet generation. To detect priority fault
of a pair of overlapping rules ri and rj , a probe packet p should
match with both ri and rj . We introduce a new rule r∩ij with
matching space rMS

∩ij = rMS
i ∩rMS

j and action rA
∩ij = rA

i or rA
j .

Then probing priority fault for (ri, rj) ∈ FTctr is equivalent
to probing missing fault for r∩ij ∈ FTctr − ri − rj + r∩ij ,
which we have already proved an NP-complete problem. �

Theorem 2: Troubleshooting priority order of a pair of
overlapping rules with l-bit matching fields requires O(2l)
probe packets in worst cases [1].

For cases when rl′MS
∩ij =

⋃
∀r∈R∩

ij
rl′MS and |R∩

ij | is pro-
portional to l′, from Theorem 2 follows Corollary 1.

Corollary 1: Given a flow table with n rules, troubleshoot-
ing priority order of (ri, rj) on data plane requires O(2n)
probe packets in worst cases.

III. INSPECTING FORWARDING FAULTS

In this section, we explore solutions to the stepping stone
for RuleScope—detection and troubleshooting algorithms.
They generate probe packets to exercise data-plane rules and
detect/troubleshoot rule faults based on probing results. The
detection algorithm reveals all existing rule faults while trou-
bleshooting algorithms uncover actual on-switch flow tables.

For ease of understanding, we in this section focus on static
rule sets to inspect. In other words, if rule update happens, we
may re-execute the algorithms to propose over the entire new
rule set. This is obviously not a wise choice for monitoring
highly dynamic networks with frequent rule updates. We defer
our exploration of algorithms that require re-execution for only
incremental rules (i.e., added or removed) to Section IV.

A. Probe

As Theorem 1 shows, probe-generation for priority fault has
the same complexity as that for missing fault. For probing
ri’s missing fault, we need solve Equation 3 to obtain an
l-bit assignment of probe packet p’s packet header, that is,
(p0, . . . pb, pl−1) (where pb ∈ {0, 1}). If p exists, it is straight-
forward that we have pb = xib if xib is 0 or 1. For a pb

corresponding to xib = ∗, it is complex to be individually
assigned with 0 or 1; we need consider all pb’s corresponding
to wildcard-xib’s at the same time by Theorem 2. For example,
consider that rule ri contains two wildcards. Then the binary
assignment of the corresponding two bits in probe packet p’s
packet header must not be identical to or covered by that
of any rj , which p should not match. We solve Equation 3
using a high-performance SAT solver called MiniSat [23]
(Theorem 1). We integrate MiniSat into our probe generation
function SampleProbe(r, R). Accepting rule r and a set R of
rules as inputs, SampleProbe(r, R) outputs a probe packet p
that matches r but does not match rules in R. Furthermore,
p has every bit automatically specified.

We, however, cannot efficiently and effectively probe for
ri’s missing fault directly using SampleProbe(ri, FT ′

sw),
where FT ′

sw = {rj | rj ∈ FTsw and rP
j > rP

i } (Theorem 1).
Given that flow table FTsw usually contains hundreds of
rules [24], FT ′

sw might impose too many constraints on
SampleProbe(ri, FT ′

sw). This seriously limits the scalabil-
ity of probe generation. Even worse, given that FTsw may
encounter missing and priority faults, rules rj ∈ FT ′

sw

are hardly known a priori. Any rj ∈ FTsw with rMS
j ∩

rMS
i �= ∅ could have higher priority than ri does on the

switch. FT ′
sw then should incorporate all rj ∈ FTctr with

rMS
j ∩ rMS

i �= ∅. Whenever such rj leads to rMS
j ⊃ rMS

i ,
SampleProbe(ri, FT ′

sw) is not solvable. Such undesirable



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEN et al.: RuleScope: INSPECTING FORWARDING FAULTS FOR SDN 5

Algorithm 1 Rule Fault Detection Algorithm
Input : Flow table FTctr

Output: Set Rfault of faulty rules
1 Rfault ← ∅;
2 G = < V, E > ← FTctr’s dependency graph;
3 C ← G’s weakly connected componets;
4 Set P of < packet p, rule v > ← ∅;
5 foreach weakly connected component in C do
6 Header space H ← ∅;
7 foreach vi in topological order do
8 if vi is not isolated (i.e., vi.degree ! = 0) then
9 if ∃vj that directly depends on vi then

10 foreach vj do
11 p← SampleProbe(vi ∩ vj , H);
12 if p == ∅ then
13 p← SampleProbe(vi, H);

14 P ← P ∪ < p, vi >;

15 else
16 p← SampleProbe(vi, H);
17 P ← P ∪ < p, vi >;

18 H ← H ∪ vi;
19 else
20 p← SampleProbe(vi, H);
21 P ← P ∪ < p, vi >;

22 foreach < p, vi > ∈ P do
23 Inject p to data plane;
24 if p does not follow vi’s action then
25 Rfault ← Rfault ∪ ri;

26 return Rfault;

cases occur quite frequently because flow tables contain many
overlapping rules.

Our rule fault detection algorithm reduces the number of
constraints as inputs to SampleProbe(·) with the help of the
dependency graph of the flow table.

B. Detection

Goal: The detection algorithm aims to find faulty rules
using probes on data plane. A faulty rule is the rule that
fails to match actual packets that it should be able to match
according to header space semantics. In this paper, we focus
on rule missing fault and priority fault. Consider again the
example in Table I—the toy rule set has two overlapping rules
with priorities of phigh and plow. Ideally, we expect that an
HTTP request from 10.10.1.1 to be processed by phigh-rule.
If the request is not dropped as phigh-rule’s action specifies,
we consider phigh-rule as faulty. Specifically, we consider the
possibility that either phigh-rule is missing or the two rules
encounter a priority-order swap.

Design: The detection algorithm consists of two key steps,
probe generation and fault detection (Algorithm 1). Probe
generation finds sufficient packets for verifying whether each
rule is faulty (lines 2-21). Fault detection then injects probe

Fig. 2. An example dependency graph of a flow table.

packets to data plane and detects faulty rules based on probe
feedback (lines 22-25). Between the two steps, probe genera-
tion is the core of Algorithm 1. We adopt various techniques
toward efficiency while generating sufficient packets to guar-
antee detection accuracy. First, we reduce the scale of probe
generation by dividing a flow table to independently solvable
subsets of rules. Second, in each rule subset, we catch any
faulty rule without exercising it twice against missing fault
and priority fault. Third, we generate probe packets for a rule
without necessarily involving all other rules in the same subset
as constraints to SampleProbe(·).

Reduce probe generation scale using dependency graph.
The dependency graph G = < V, E > of flow table FTctr

is the following directed acyclic graph (line 3) [14].
• For each ri ∈ FTctr, there is a corresponding vertex vi

in V . We may use vi and ri interchangeably.
• For each pair of rules ri and rj , if ri overlaps with rj

and has higher priority than does rj , there is a directed
edge < vi, vj > in E.

If edge < vi, vj > exists, we say that vj directly depends
on vi. If there is a directed path from vi to vj , we say that
vj depends on vi. Based on dependency graph, we find all
maximal subgraphs each with vertices connecting with no
vertex in other maximal subgraphs. Such maximal subgraphs
are essentially weakly connected components of G (line 3).
Since rules in different components involve no dependency,
we independently generate probe packets for each component
without wrestling with the entire flow table. This promises
faster probe generation with smaller problem scale within each
component and parallelism among different components.

Efficiently generate probe packets for each weakly con-
nected component. Beyond reducing problem scale to indepen-
dently solvable components, we further strive for efficiency
in each component (lines 5-21). Specifically, we generate
a probe packet to verify each directly-dependent rule pair.
For example, Figure 2 depicts a flow table with three rules
(A, B and C) and the dependency graph of the rules. We gen-
erate two probe packets to verify A.priority> B.priority and
B.priority> C.priority correspondingly. Probe 1 is sampled
from the header space A ∩ B and Probe 2 is sampled from
(B ∩ C) − A. In this process, we use several techniques to
speed up the generation of a probe packet.

First, we reduce the number of probe packets by leveraging
the fact that probing priority faults reveals also missing faults.
Consider, for example, a pair of rules where vj directly
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depends on vi. We expect that a packet for probing their
priority order match with both rules and follow vi. One such
packet is sufficient for detecting faulty vi corresponding to vj .
Whether vi is missing or encounters priority swap with vj (or
with another lower priority rule that also matches the probe
packet), the probe packet will not be processed by vi. Since
more than one rule may directly depend on vi, we need to
enumerate all of such rules to ensure vi’s freedom of priority
faults (lines 10-14). We enforce the above probing of rule pairs
following topological order. When we reach a rule directly
depended by no rule, we generate a probe packet for probing
its missing fault only (lines 16-17 and 20-21).

Second, we speed up generating probe packets by sim-
plifying constraints for SampleProbe(·). As discussed in
Section III-A, SampleProbe(·) requires two parameters—the
first (or second) regulates rules that a probe packet should (or
should not) match with. When generating probe packets for vi,
the first parameter is vi if we probe its missing fault or vi∩vj

if we probe its priority fault. The second parameter is critical
for efficient and effective probe generation. To simplify its
imposing constraints on SampleProbe(·), we eliminate from
it as many rules irrelevant to detection accuracy as possible. An
easy example arises from probing a rule without dependency
(lines 20-21). Since a packet matching with such rule does not
match with other rules, we can use an empty set as the second
parameter of SampleProbe(·) for acceleration.

Correctness: Having explored how Algorithm 1 efficiently
generates probe packets, we now study its correctness in terms
of detection accuracy in Theorem 3.

Theorem 3: Algorithm 1 can accurately detect faulty rules
on data plane without false negatives or false positives.

Proof: A false negative occurs when Algorithm 1
regards a faulty rule as correct. A false positive occurs when
Algorithm 1 detects a correct rule as faulty.

No false negatives: Without loss of generality, we assume
that vi is the faulty rule under study. The proof falls into two
cases according to whether some rule directly depends on vi.

When no rule directly depends on vi, it is under missing
fault while it could be isolated or directly depend on another
rule. If vi is isolated, SampleProbe(vi, H = ∅) must gen-
erate a probe packet (line 20), which reveals vi’s missing
fault. If vi directly depends on another rule, we generate a
probe packet by SampleProbe(vi, {v | vi depends on v})
(line 16). The probe packet does not exist if any packet
matching with vi matches with a higher priority rule v.
In this case, vi is an obscured rule, which should be
eliminated from well crafted flow tables (Section II-A).
SampleProbe(vi, {v | vi depends on v}) thus can find a
probe packet to reveal vi’s missing fault.

When some rule vj directly depends on vi, it could
be under either missing fault or priority fault. If
SampleProbe(vi ∩ vj , {v | vi depends on v}) finds a
probe packet (line 11), it will not follow vi’s action whether
vi is missing or priority swapped with vj (or another lower
priority rule). We thus successfully detect faulty vi. If
SampleProbe(vi ∩ vj , {v | vi depends on v}) finds no
probe packet, any packet matching with both vi and vj

must match with a higher priority rule. In this case, we turn

to SampleProbe(vi, {v | vi depends on v}) (line 13) for
generating a probe packet. The probe packet will not follow
vi’s action whether vi is missing or priority swapped with a
lower priority rule, revealing faulty vi.

Because Algorithm 1 successfully detects faulty vi in both
cases, it has no false negatives.

No false positives: By Algorithm 1, vi is detected as faulty
if its probe packet p does not follow its action. Algorithm 1
generates p in one of four cases (lines 11, 13, 16, and 20).
If vi is isolated, p follows line 20 and matches with only
vi. If p does not follow vi’s action, vi must be missing.
If vi is not isolated, Algorithm 1 may generate p using
SampleProbe(vi, {v | vi depends on v}) (lines 13 and 16).
If p follows no action (for p from lines 13 and 16) or
another lower priority rule’s action (for p from line 13),
vi must be missing or encounter a priority fault. Moreover,
Algorithm 1 may also generate p using SampleProbe(vi ∩
vj , {v | vi depends on v}) (line 11), where vj directly depends
on vi. If p follows vj ’s or another lower priority rule’s action,
vi must be missing or encounter a priority fault. In summary,
the faulty rule vi detected by Algorithm 1 really is faulty.
Algorithm 1 thus has no false positives. �

C. Troubleshooting

High-level idea: The troubleshooting algorithm aims to
uncover actual flow table FTsw on a switch. We realize that
priority value of each rule is imperceivable with data plane
probes. Instead, we want to reveal the dependency of actual
rules with pair-wise rule priority order, since in this way
we can reconstruct the total order of rule priority that is
isomorphic to the dependency graph of the actual flow table.

In this section, we reconstruct dependency graph
Gsw =< V, E > of actual effective rules on the switch.
Gsw should satisfy the following two conditions.

• V : For each rule r ∈ FTctr, if it is not missing or
obscured on the switch, its corresponding vertex v must
be in V .

• E: For each pair of rules ri and rj in FTctr, if ri has
higher priority than rj does on the switch, a directed edge
< vi, vj > connecting their corresponding vertices in V
must be in E.

Without knowing a priori the actual rule existence and priority
on the switch, we need to exhaust all possible dependency
relations and accordingly generate probe packets. This, as
Corollary 1 demonstrates, may cost offline troubleshooting of
exponential scale probes.

As opposed to the above ‘offline’ approach that generates
all the probe packets offline in one batch (i.e., O(2n) by
Corollary 1), we opt for an online approach that adaptively
generates one probe packet after knowing the probe result of
the previous probe packets, and a semi-online approach that
generates probe packets in small batches to better leverage the
probe bandwidth.

Online troubleshooting algorithm: We propose efficiently
troubleshooting rule faults in an online fashion (Algorithm 2).
It adaptively generates/injects probe packets, using previous
probe results to reduce the number of later probe packets. For
example, we could first generate and inject probe packet p for
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Algorithm 2 Online Troubleshooting Algorithm
Input : Flow table FTctr

Output: Dependency graph Gsw =< V, E > of data
plane rules

1 V ← {vi | vi corresponds to ri ∈ FTctr};
2 E = ∅;
3 Set S ← all pairs of overlapping rules in FTctr;
4 while S �= ∅ do
5 (vi, vj)← any overlapping-rule pair in S;
6 H ← {v | if < v, vi > and < v, vj >∈ E};
7 p← SampleProbe(vi ∩ vj , H);
8 if {p} = ∅ then
9 S ← S − {(vi, vj)};

10 else
11 V ′ ← set of v ∈ FTctr that matches p;
12 Inject p to data plane;
13 if p matches with no rule then
14 V ← V − V ′;
15 E ← E − {edges connecting to v ∈ V ′};
16 S ← S − {rule pairs including v ∈ V ′};
17 else
18 vhit ← the rule in V ′ that processes p;
19 foreach v ∈ V ′ − {vhit} do
20 E ← E ∪ {< vhit, v >};
21 S ← S − {(vhit, v)};

22 foreach v ∈ V and v.outdegree = 0 do
23 if v.indegree = 0 then
24 p← SampleProbe(v, ∅);
25 else
26 p← SampleProbe(v, {v′ | < v′, v >∈ E});
27 if {p} = ∅ or p does not follow v upon injection then
28 V = V − {v};
29 E = E − {< v′, v > | < v′, v >∈ E};
30 return Gsw =< V, E >;

a pair of rules vi and vj (lines 5-7). On the one hand, p may
be not processed by any rule upon injection. In this case, p
helps reveal that not only vi and vj but also all other rules
matching with p in FTctr are missing on the switch. We then
eliminate their related vertices and edges from Gsw and save
corresponding probes (lines 13-16). On the other hand, let vhit

denote the rule that processes p. Rule vhit could be vi, vj , or
another rule that also matches with p. Again, p might reveal
states of more than vi and vj—vhit has higher priority than
does any other rule matching with p. We then connect vhit

with these rules and exclude the connected pairs from later
probes (lines 18-21). The preceding cases indicate that online
design yields O(|E|) = O(|V |2) = O(|FTctr|2) = O(n2)
complexity for probing rule dependency (lines 4-21).

To guarantee the correctness of Algorithm 2, we need to
further probe the existence of rules on which no other rule
depends (lines 22-29). For one such rule v, we first generate
its probe packet p (line 23-26). If p does not follow v upon

Algorithm 3 Semi-Online Troubleshooting Algorithm
Input : Flow table FTctr

Output: Dependency graph Gsw =< V, E > of data
plane rules

1 Initiate V , E, and S as lines 1-3 in Algorithm 2;
2 while S �= ∅ do
3 Set P of probe packet p ← ∅;
4 foreach overlapping rule pair (vi, vj) in S do
5 Generate p as lines 6-7 in Algorithm 2;
6 if {p} = ∅ then
7 S ← S − {(vi, vj)};
8 else
9 P ← P ∪ {p};

10 foreach p ∈ P do
11 Lines 11-21 in Alg 2;

12 Lines 22-29 in Algorithm 2;
13 return Gsw =< V, E >;

injection, v is missing on the switch. One corner case is that
p might not exist if v depends on other rules (line 26). In
this case, v is an obscured rule as any packet matching it
matches one of higher priority rule. In this case, whether or
not v exists on the switch, it will not take effect. We thus
regard also obscured rules as missing. Once a missing rule
is detected, we eliminate its corresponding vertex and edge(s)
from Gsw (lines 28-29). Probing missing rules in lines 22-29
yields O(|V |) = O(|FTctr|) = O(n) complexity.

Combining the above two parts, the complexity for
Algorithm 2 to uncover actual on-switch flow table is O(n2),
way more efficient than its offline counterpart’s O(2n).

Semi-online troubleshooting algorithm: We further explore
a faster, hybrid design to reap the benefits of both offline
and online algorithms (Algorithm 3). Its major difference
from the online algorithm is issuing probe packets at a batch
level (lines 10-11). We can regard the online algorithm as a
special case of the semi-online algorithm with batch size one.
The semi-online algorithm regains a significant amount of
efficiency that is otherwise lost in the fully sequential online
algorithm. First, batch-level probing leaves out repeat of
operations without necessarily running from scratch for each
probe packet (lines 3-11). In light of this, generating x probe
packets at once may be faster than invoking probe generation
x times. Second, increasing the number of probe packets in
flight can exploit more parallelism among switch ports.

We analyze how many probe packets Algorithm 3 costs.
Each round generates a probe packet for each unverified pair
of overlapping rules (lines 3-11). The number of probe packets
per round is upper bounded by O(|V |2) = O(|FTctr|2) =
O(n2). Moreover, each round reveals at least the highest-
priority rule among ones unmatched in previous rounds. The
number of rounds is thus upper bounded by O(|V |) =
O(|FTctr| = O(n). The complexity of Algorithm 3 in terms
of the number of probe packets is O(n2)×O(n) = O(n3).
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TABLE II

ALGORITHM COMPLEXITY

D. Complexity

Table II summarizes the complexity of detection and trou-
bleshooting algorithms in terms of the number of probe
packets. The detection algorithm (Algorithm 1) aims to quickly
verify rule consistency between the controller and the switch.
Algorithm 1 models rule set using dependency graph and gen-
erates a probe packet for every pair of adjacent rules. The num-
ber of probe packets generated by Algorithm 1 is thus upper
bounded by O(|E|) = O(|V |2) = O(|FTctr|2) = O(n2).
Once a faulty rule is detected, we can use troubleshooting
algorithms to reveal actual rule existence and priority order on
the switch. The number of probe packets generated by different
troubleshooting algorithms is analyzed in Section III-C. For
large and complex rule sets, we expect to rank troubleshooting
algorithms in decreasing order of probe-packet number as
offline algorithm, online algorithm (Algorithm 2), and semi-
online algorithm (Algorithm 3).

We now discuss algorithm complexity in terms of the
execution time. Thanks to the SAT solver—MiniSat—that can
get an approximate solution in polynomial time, algorithms
requiring a polynomial number of probe packets thus deliver
detection (Algorithm 1) or troubleshooting (Algorithm 2 and
Algorithm 3) in polynomial time. But for offline troubleshoot-
ing algorithm with an exponential number of probe packets,
we cannot guarantee its execution in polynomial time. To
rank troubleshooting algorithms in decreasing order of time
complexity for large and complex rule sets, we still expect
an order as offline algorithm, online algorithm (Algorithm 2),
and semi-online algorithm (Algorithm 3). We will present their
implementation in Section V and evaluate their accuracy and
efficiency in Section VI.

IV. INSPECTING DYNAMIC NETWORKS

In dynamic networks, data-plane rules may frequently
change over time. To verify the correct forwarding behavior
of dynamic data-plane rules, a straightforward approach is to
apply the above detection and troubleshooting algorithms on
each snapshot of the data-plane rules. However, considering
the computation and probing overhead, it is more favorable to
have incremental algorithms that leverage the previous detec-
tion and troubleshooting results to avoid redundant probes.
Because the number of changed rules is typically much smaller
than the number of total data-plane rules, such optimiza-
tion can bring significant speed-up over the straightforward
approach. We next further investigate such incremental algo-
rithms toward detecting and troubleshooting forwarding faults
for dynamic networks in real time.

Algorithm 4 Incremental Rule Fault Detection Algorithm
Input : Last verified flow table FTprev and unverified

rules FTnew

Output: Set Rfault of faulty rules
1 FTctr ← FTprev ∪ FTnew;
2 Rfault ← ∅;
3 G = < V, E > ← FTctr’s dependency graph;
4 C ← G’s weakly connected components;
5 Set P of < packet p, rule v > ← ∅;
6 foreach weakly connected component in C do
7 Header space H ← ∅;
8 foreach vi in topological order do
9 if vi is not isolated (i.e., vi.degree ! = 0) then

10 if ∃vj that directly depends on vi then
11 foreach vj do
12 if vi ∈ FTprev and vj ∈ FTprev then
13 continue;
14 else
15 p← SampleProbe(vi ∩ vj , H);
16 if p == ∅ then
17 if vi ∈ FTprev then
18 continue;
19 else
20 p← SampleProbe(vi, H);

21 P ← P ∪ < p, vi >;

22 else
23 if vi ∈ FTprev then
24 continue;
25 else
26 p← SampleProbe(vi, H);
27 P ← P ∪ < p, vi >;

28 H ← H ∪ vi;
29 else
30 if vi ∈ FTprev then
31 continue;
32 else
33 p← SampleProbe(vi, H);
34 P ← P ∪ < p, vi >;

35 foreach < p, vi > ∈ P do
36 Inject p to data plane;
37 if p does not follow vi’s action then
38 Rfault ← Rfault ∪ ri;

39 return Rfault;

A. Incremental Detection

Goal: The incremental detection algorithm aims to reuse as
much verified information as possible from the last verified
flow table; it then probes for the potential faults that involve
only the newly added unverified rules. Toward this goal, we
consider the rule dependency relations in the last flow table as
correct and avoid to probe them again. For example, consider
that a rule with priority phigher > phigh is added to the
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flow table in Table I. The previous probes conducted to the
last flow table already provide evidence for the existence
and correct priority of phigh-rule and plow-rule. Hence, the
incremental detection algorithm only needs to probe the exis-
tence of phigher-rule and the priority order of phigher-rule and
phigh-rule.

Design: We first propose an incremental algorithm for
detecting forwarding faults (Algorithm 4). Similar with Algo-
rithm 1, the incremental detection algorithm also consists of
two key steps—probe generation and fault detection. Probe
generation finds the probe packets for verifying the rule faults.
Fault detection then injects probe packets to data plane and
detects faulty rules based on probe feedback.

Different from the static algorithm, the incremental algo-
rithm takes as input the last verified flow table FTprev and
newly added unverified rules FTnew. In the probe generation
step, the incremental detection algorithm uses the additional
information to avoid generating redundant probes. Specifically,
consider a probe packet that is to verify the priority order of a
pair of rules vi and vj (e.g., packet p at line 15). We generate
the probe packet only if at least one of the rules vi and vj is
newly added. Otherwise, the priority order should have been
verified previously and the probe packet need not be generated
(lines 12-13). Similarly, if a probe packet is to verify the
existence of a rule vi, we generate the probe packet only if the
rule vi is newly added. Otherwise, the existence of vi should
have been verified previously and the probe packets need not
be generated (lines 17-18, 23-24 and 30-31).

The correctness of Algorithm 4 is ultimately assured by
Theorem 3. Theorem 3 assures that Algorithm 1 detects faulty
rules without false negatives or false positives. Furthermore,
Algorithm 4 generates a set of probe packets Pinc, which is
a subset of the set Pfull generated by Algorithm 1. Note the
fact that all the rules in the last flow table is already verified,
which assures any probe packet from Pfull − Pinc would not
be able to reveal any faults. Therefore, Algorithm 4 can also
detect faulty rules without false negatives or false positives.

Complexity: The number of probe packets generated by
Algorithm 4 is determined by the probe generation step
(lines 8-34). Specifically, two types of probe packets can be
generated: priority order probes and rule existence probes.
Since the incremental algorithm only verifies the priority order
between a newly added rule and another rule, the total number
of priority order probe packets is O(mn), where m denotes
the number of newly added rules and n denotes the total
number of rules. Also, the incremental algorithm only verifies
newly added rules for existence, thus the number of rule
existence probe packets is O(m). Therefore, the complexity
of Algorithm 4 is O(mn) +O(m) = O(mn).

B. Incremental Troubleshooting

Goal: The incremental troubleshooting algorithm aims to
reveal the actual rules in an incrementally changing flow table
with minimum number of probe packets. We leverage the
previously verified probe results from both the fault detection
algorithm and the troubleshooting algorithm. We thus avoid the
redundant probes of the rule existence or priority order that is
already verified by previous results. For example, consider the

Algorithm 5 Incremental Troubleshooting Algorithm
Input : Flow table FTctr and the verified dependency

graph Gprior =< Vprior, Eprior >
Output: Dependency graph Gsw =< V, E > of data

plane rules
1 V ← Vprior;
2 E ← Eprior;
3 S ← ∅;
4 ETC ← the transitive closure of E;
5 foreach overlapping rule pair < vi, vj > in FTctr do
6 if < vi, vj > or < vj , vi >∈ ETC then
7 continue;
8 else
9 S ← S∪ < vi, vj >;

10 while S �= ∅ do
11 (vi, vj)← any rule pair in S;
12 H ← {v | if < v, vi >∈ E or < v, vj >∈ E};
13 p← SampleProbe(vi ∩ vj , H);
14 if {p} = ∅ then
15 S ← S − {(vi, vj)};
16 else
17 V ′ ← set of v ∈ FTctr that matches p;
18 Inject p to data plane;
19 if p matches with no rule then
20 V ← V − V ′;
21 E ← E − {edges connecting to v ∈ V ′};
22 S ← S − {rule pairs including v ∈ V ′};
23 else
24 vhit ← the rule in V ′ that processes p;
25 foreach v ∈ V ′ − {vhit} do
26 E ← E ∪ {< vhit, v >};
27 S ← S − {(vhit, v)};

28 foreach v ∈ V and v.outdegree = 0 do
29 if v.indegree = 0 then
30 p← SampleProbe(v, ∅);
31 else
32 p← SampleProbe(v, {v′ | < v′, v >∈ E});
33 if {p} = ∅ or p does not follow v upon injection then
34 V = V − {v};
35 E = E − {< v′, v > | < v′, v >∈ E};
36 return Gsw =< V, E >;

scenario that the rule fault detection algorithm finds one pair
of rules with incorrect priority order. Since the probe results
from the detection algorithm are insufficient to reconstruct
the actual flow table, it further triggers the troubleshooting
algorithm to uncover the actual flow table. The incremental
troubleshooting algorithm now has partial probe results from
the detection algorithm to narrow down the hypothesis space
and therefore costs less probes.

Design: We propose efficiently troubleshooting a changing
flow table by exploiting the previous probe results to reduce
the number of probe packets (Algorithm 5). The incremental
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Fig. 3. RuleScope prototype architecture and work flow. X: Switch.

troubleshooting algorithm is analogous to the online trou-
bleshooting algorithm except for the input and the initialization
process. The incremental troubleshooting algorithm takes as
input the current flow table FT along with its verified partial
dependency graph Gprior. Gprior includes the verified existing
rules in the vertex set Vprior and the rule set with verified
priority order Eprior. In the initialization step, the incremental
troubleshooting algorithm uses the verified dependency infor-
mation to minimize the size of rule pair set S, which contains
all the rule pairs with uncertain priority order.

Complexity: The number of probe packets generated by
Algorithm 5 is determined by the number of iterations of
the while-loop (lines 10-27), which is ultimately limited by
the size of S. This is because one probe in the main loop
eliminates at least one element in S. Although it is difficult to
directly estimate the size of S, we can provide a loose upper
bound of |S| from the number of rule faults k, which we expect
to be small. We define relevant rules v1, v2 of a probe as the
rules whose priority order the probe is supposed to verify. We
denote Vu as the set of relevant rules of the k faulty rules.
We also denote Vr as the rest of rules. Obviously, one probe
packet has two related rules, so |Vu| ≤ 2k and |Vk| < n.
Since the priority order among Vk are all confirmed, S is
only a subset of rule pairs within Vu or between Vu and Vk.
Therefore, |S| < 2kn + 1

2k2 ≈ 2kn.

V. PROTOTYPE

In this section, we present our implementation of RuleScope
prototype. We first present the architecture and work flow. We
then detail the experiment setup.

A. Architecture

Figure 3 demonstrates the architecture and work flow of
RuleScope prototype. App transforms forwarding policies to
rules, which are populated to switches (step 1). Monitor App
hosts our algorithms for inspecting data-plane rule faults. They
take rules constructed by App as input and generate probe
packets. Injector injects probe packets to data plane (step 2).
Toward forwarding inspection, we need to know how switches
handle probe packets, that is, which probe packet is processed
by which rule (step 3). We obtain such probing results using
the postcard method by NetSight [13]. Postcard augments a
rule with two additional actions. First, it tags packet headers
with a unique rule ID. Second, it forwards a copy of the
tagged packet to Postcard Processor. It is such instrumented

rules by postcard (rather than the original rules from App)
that RuleScope installs on switches (step 1). This way, we
can recover packet processing history on data plane. To ease
extracting probe packets from received packets on Postcard
Processor, we encapsulate a unique packet ID in the payload
of each probe packet. Packet IDs facilitate also correlating
a probe packet with corresponding rule(s) under inspection.
Finally, Postcard Processor feeds the probing results back to
Monitor App, where our algorithms continue to complete the
remaining inspection process (step 4).

Of particular emphasis is multi-switch probing. It may
seem more complex as some probe packets need to traverse
through several switches before reaching the one they test
(Figure 3). However, we can simplify it in a straightforward
way. Specifically, Postcard Processor can directly inject probe
packets to any switch under test. This also enables parallel test
among switches. Another concern is that a probe packet may
further traverse through other switches, hit rules therein, and
trigger unnecessary postcarded probe packets. We can make
packet ID of probe packets to correlate to the switch it tests.
Then unnecessary postcards a rule triggers on uncorrelated
switches will not affect inspection accuracy. In light of these
observations, we implement only the single-switch scenario
for ease of evaluation and presentation.

B. Experiment Setup

Control plane: We use the Ryu OpenFlow controller [15]
as the controller of RuleScope testbed. The controller runs
on a server with Intel(R) Xeon(R) CPU X5560 (8M cache,
2.80 GHz, 36 GB memory), which also hosts our Monitor
App, Injector, and Postcard Processor. We use ClassBench [25]
as App for generating flow table dataset. Monitor App hosts
our key design—Algorithms 1-3. We implement the algorithms
in Python and C++ (2600+ lines of code in Python for
algorithm framework and 300+ lines of code in C++ for
high performance header space analysis, in addition to 2800+
lines of open-source MiniSat codes in C++ [23]). The server
communicates with data plane via two 1 GE interfaces. One
is for Injector to inject probe packets. The other is for
Postcard Processor (in Python, 230+ lines of code) to issue
instrumented rules and collect postcarded packets.

Data plane: We use a Pica8 P-3297 [16] as the SDN
switch of RuleScope testbed. Per later results, 300+ rules
on the switch incur about 1500+ 52-byte probe packets
within 16 seconds. They cost only 0.06% of controller-switch
link bandwidth and 0.0003% of switching fabric capacity
(176 Gbps). Such volume of traffic can hardly affect high-
performance networks. We thus omit measuring the impact of
probe packets on flow rate and mount no end-hosts to data
plane.

Rule-set: We generate the rule set for OpenFlow switches
using network filter generation tool ClassBench [25].
Specifically, we generate prefix based forwarding and
ACL filters using ClassBench and translate the filters into
equivalent OpenFlow rules. We cannot simply assign priorities
to these original rules. Doing so introduces various issues
that cause forwarding errors. For example, assume that we
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Fig. 4. Comparison of detection and troubleshooting algorithms with varying size of correct flow tables. (Same legend for all subfigures.) (a) Overall
Execution Time. (b) Probe Generation Time. (c) Probe Complexity. (d) Per-probe Generation Time.

TABLE III

DEPENDENCY DEPTH OF FLOW TABLES

use ClassBench to generate two rules in the following order:
ipsrc=10.10.*.*, drop; ipsrc=10.10.10.10, forward via port 80.
The first rule drops packets from the 10.10.0.0/16 subnet
while the second one forwards packets with 10.10.10.10 as
source IP address via port 80. In practice, it is normal that the
second rule should be granted higher priority. Thus, simply
assigning decreasing priorities to generated rules following
their original order will cause forwarding errors. In this case,
packets with source IP address of 10.10.10.10 will be wrongly
dropped. To avoid such issues, we pre-process generated rules
before assigning priorities to them. Specifically, we group
overlapping rules and, for each group, sort them in decreasing
order of rule granularity. Then within each sorted group, we
assign descending integer priorities to rules. Priority ranges of
different group do not overlap. We then generate dependency
graph of the OpenFlow rule-set using the dependency
generation tool in RuleTris [9]. Table III shows the depth of the
dependency graphs for the rule tables used in the experiment.

VI. EVALUATION

In this section, we evaluate the efficacy and efficiency of our
algorithms on the RuleScope testbed. Efficacy is measured in
terms of how accurately the algorithms detect/troubleshoot rule
faults on data plane. Experiments show that the detection algo-
rithm can detect faulty rules without false negatives/positves
while troubleshooting algorithms can faithfully construct the
dependency graph of on-switch flow table. We focus more on
reporting statistics for efficiency, which is measured in terms
of execution time and the number of probe packets.

Rule fault emulation: We concern with both missing faults
and priority faults. To emulate missing faults, we directly
ignore issuing some rules to the switch. We conduct con-
tinuous measurements on Pica8 P-3297 and find no priority
fault as in [3]. As a work-around, we swap priorities of some
overlapping rules before issuing them to the switch to emulate
priority faults.

TABLE IV

RATIO OF PROBE GENERATION TIME OVER OVERALL EXECUTION

TIME WITH VARYING NUMBER OF CORRECT RULES

Algorithm implementation: We implement the core header
space analysis library in Python and C++. Except Detection-
Python, all other algorithms use the C++ implementation
for efficiency. We highlight the efficiency difference between
Python and C++ implementations of the detection algorithm
to exhibit the potential efficiency improvement space in code
optimization.

A. Detection Versus Troubleshooting With Correct Rules

We first evaluate the algorithms under varying number of
correct on-switch rules. Figure 4 reports the evaluation results.

Figure 4(a): Overall execution time: All algorithms’ overall
execution time increases with flow table size. Semi-online
troubleshooting algorithm keeps being faster than its online
counterpart. For experiment instances reported in Figure 4,
semi-online costs 23.1% less time than does online given 10
rules whereas this gap increases to 48.3% given 320 rules.
We were expecting that detection be faster than troubleshoot-
ing. Then we could run faster detection first and invoke
slower troubleshooting only if rule faults are detected. Small
flow tables do live up to such expectation. For 10 to 80
rules, the overall execution time of detection algorithm is
64.9% (83.8%) on average of that of online (semi-online)
troubleshooting algorithm. However, when flow table size
reaches 160, detection becomes slower than troubleshooting.
When flow table size is 320, detection algorithm in C++
costs 176.0 seconds whereas online troubleshooting algorithm
and semi-online troubleshooting algorithm take 37.9 seconds
and 19.6 seconds, respectively. Furthermore, we observe that
C++ implementation is faster than Python implementation by
around 30% to 50%. On the other hand, the online and semi-
online troubleshooting algorithms scale better with large rule
tables.

Figures 4(b)-(d): Probe overhead: The main reason why
detection is much slower than troubleshooting for large flow
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Fig. 5. Execution time of detection algorithm with 320 rules including
varying number of (a) missing rules and (b) pairs of priority-fault rules.

tables is that its probe generation time leaps when flow table
size exceeds 160 whereas troubleshooting algorithms’ stays
smoother (Figure 4(b)). All algorithms’ probe generation time
increases with flow table size. The ratio of probe generation
time over overall execution time increases with flow table size
as well (Table IV, with limited deviation for small flow tables).
Although taking different time, all algorithms generate com-
parative number of probe packets (Figure 4(c)). This indicates
that the algorithms have quite different per-probe generation
time (Figure 4(d)). For 320 rules, per-probe generation time
of detection-C++, online troubleshooting, and semi-online
troubleshooting is 135 ms, 23 ms, and 12 ms, respectively.
This detection-troubleshooting gap stems from the scale of the
second input/constraint for MiniSat solver (Algorithms 1-3).
When generating a probe packet for a pair of rules, detection
algorithm considers all rules directly or indirectly depended
by the pair as constrains whereas troubleshooting algorithms
take into account only the directly-dependent ones.

B. Detection With Faulty Rules

We then evaluate time efficiency of detection algorithm
with a 320-rule flow table including varying number of faulty
rules. The number of faulty rules comprises the number of
missing rules and the number of pairs of priority-fault rules.
Figure 5(a) and Figure 5(b) respectively report the evaluation
results under 1-32 randomly picked missing rules and pairs of
priority-fault rules. All instances use the same flow table and
therefore the same set of probe packets.

We have three observations from the results. First, detecting
the first faulty rule approximates the overall detection time,
regardless of the number of faulty rules. Second, varying
number of faulty rules causes limited fluctuation to the overall
detection time. The standard deviation of the overall detection
time is around 2 seconds, which is only 0.6% of the aver-
age overall detection time. The preceding two observations
are because over 95% of the overall detection time is for
generating probe packets (Table IV). Only after generating
all probe packets can detection algorithm start inspect rule
correctness. Third, more missing rules does not necessarily
shorten detection time. To what extent can a missing rule affect
detection time depends on the number of its associated probe
packets. The more its associated probe packets are, the more
it accelerates detection because of fewer postcarded packets
to process.

TABLE V

RATIO OF PROBE GENERATION TIME OVER OVERALL EXECUTION TIME
WITH VARYING NUMBER OF FAULTY RULES AMONG 320 ONES

Fig. 7. Comparison of overall execution time and the number of probe
packets between incremental and non-incremental detection algorithms. The
flow table contains 320 existing rules. Note that the y-axis is in log scale. (a)
Overall Execution Time. (b) Probe Complexity.

C. Detection Versus Troubleshooting With Faulty Rules

Next, we compare the performance of all algorithms with
a 320-flow table including varying number of faulty rules.
For each instance reported in Figure 6, faulty rules contain
both randomly picked missing rules and priority-fault rules.
Again, limited number of missing rules make the execution
time of each algorithm rarely fluctuate (Figure 6(a)). The
overall execution time of online troubleshooting algorithm
and of semi-online troubleshooting algorithm are respectively
18.4% and 11.5% on average of that of detection-C++
algorithm. Figure 6(b) reports probe generation time while
Table V reports the ratio of it over overall execution time. The
ratio corresponding to detection-C++ and detection-Python
keep constant as it works on the same 320 rules for each
instance. For troubleshooting algorithms, more faulty rules
may yield less probe generation time when detection of them
helps simplify the constraints for MiniSat solver. Another
major part of overall execution time is probe transmission time
(Figure 6(c)), which is proportional to the number of
probe packets (Figure 6(d)). Probe transmission time aggre-
gates round-trip time of probe packets for all detection/
troubleshooting rounds during one algorithm execution. For
a batch of probe packets in each round, the round-trip time
is from when the first probe packet leaves Injector to when
the last probe packet reaches Postcard Processor. Such round-
trip time for a probe packet depends on network bandwidth
and status. On our RuleScope testbed, the round-trip time per
probe packet is about 8 ms.

D. Incremental Detection and Troubleshooting

Finally, we evaluate how much the incremental detection
and troubleshooting algorithms can improve the flow table
inspecting efficiency after a full detection/troubleshooting
from scratch. Figure 7 and Figure 8 report the overall
execution time and probe complexity of incremental
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Fig. 6. Comparison of detection and troubleshooting algorithms with 320 rules including varying number of faulty rules. The number of faulty rules comprises
the number of missing rules and the number of pairs of priority-fault rules. (Same legend for all subfigures.) (a) Overall Execution Time. (b) Probe Generation
Time. (c) Probe Transmission Time. (d) Probe Complexity.

Fig. 8. Comparison between incremental and non-incremental troubleshoot-
ing algorithms. The flow table contains 320 existing rules. Note that the y-axis
is in log scale. (a) Overall Execution Time. (b) Probe Complexity.

detection/troubleshooting algorithm compared with the
corresponding non-incremental versions.

We have two observations from the results. First, the overall
execution time of incremental detection/troubleshooting
algorithms is under one second with a small rule update,
which is faster than the non-incremental versions by two to
three orders of magnitude. Second, the execution time and
probe complexity of incremental detection/troubleshooting
algorithms grows super-linearly with the size of the rule
updates. These two properties ensure that the incremental
algorithms can keep up with small but frequent network
policy updates that are common in today’s data center and
enterprise networks.

VII. CONCLUSION

We have studied accurate yet efficient inspection of SDN
forwarding and proposed RuleScope design. RuleScope
provides a series of inspection algorithms to detect and
troubleshoot forwarding faults on data plane. The detection
algorithm exposes not only previously known missing
faults but also recently discovered priority faults. Given
that comprehensive network monitoring might solicit more
than fault detection, we further propose troubleshooting
algorithms. They uncover actual data-plane flow tables, which
enable tracking real-time forwarding status and inferring
how switches handle rule updates. Moreover, we extend the
algorithms to be even more responsive with dynamically
changing forwarding policies by exploiting the invariants in
the dynamic rule updates. We believe the series of algorithms
are important for building reliable SDN networks. To make

our algorithms readily applicable, we explore also various
techniques toward enhancing efficiency without sacrificing
accuracy. We implement RuleScope with Ryu controller
and Pica8 P-3297 switch. O algorithms deliver accurate and
efficient inspection with limited overhead. For future work,
we plan to exercise RuleScope on switches with identified
priority faults [3] and arm RuleScope with efficiency
enhancements [26], [27].
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